Research Article
BibTex RIS Cite

Using Anova and Anfis Approaches in Statistical Modeling of Agricultural Experiments

Year 2022, , 574 - 597, 23.07.2022
https://doi.org/10.30910/turkjans.1101600

Abstract

Adaptif Ağ Tabanlı Bulanık Çıkarım Sistemi (ANFİS), teknoloji, üretim, sağlık, sosyal ve eğitim gibi pek çok branşta, ilgilenilen konuyu etkileyen faktörleri ve faktör düzeylerini, oluşturduğu çok sayıda kurala bağlı olarak ve çok küçük bir deneysel hata ile analiz edebilmekte ve modelleyebilmektedir. Tarım alanında da özellikle tarımsal alan seçimi ve teknolojik ürün geliştirme gibi problemlerin çözümü için uygulanmaktadır. Ürün yetiştirilmesi gibi belirli bir zaman aralığındaki durum tespit çalışmalarında ise genellikle klasik istatistik yöntemlere başvurulmaktadır. Bu yöntemlerin başında da deney tasarımı yöntemleri veya başka bir deyişle varyans analizi (ANOVA) yöntemleri gelmektedir. ANOVA ile modellenen deneyler ile ilgilenilen konuyu etkileyen faktörler ve bu faktörlerin düzeyleri, kullanılan yönteme ait tek bir kurala göre analiz edilir. ANOVA’nın tek kuralına karşılık ANFİS’in çok sayıda kuralı ile oluşturduğu modelin deneysel hatası (RMSE) çok daha küçük olduğundan daha güçlü sonuçlar vermektedir. Tarımsal ürünlerin zamana bağlı olarak ANFİS ile modellenmesi, bu alanda veri madenciliği çalışmalarını destekleyebilecektir. Bu çalışmada tarım alanında gerçekleştirilen bir durum tespit çalışması hem ANOVA hem de ANFİS ile modellenmiş ve benzer bulgular elde edilmiştir. Bununla birlikte çoğunlukla ANFİS’e ait RMSE değerleri ANOVA’dan küçük bulunmuştur. Ayrıca ANFİS çıktıları ile gerçek ölçümler arasındaki ilişkiler incelenmiştir.

References

  • Dahmardeh, M. E. H. D. I., Keshtega, B., & Piri, J. A. M. S. H. I. D. (2017). Assessment chemical properties of soil in intercropping using ANN and ANFIS models. Bulgarian Journal of Agricultural Science, 23(2), 265-273.
  • Del Cerro, R. T. G., Subathra, M. S. P., Kumar, N. M., Verrastro, S., & George, S. T. (2021). Modelling the daily reference evapotranspiration in semi-arid region of South India: a case study comparing ANFIS and empirical models. Information Processing in Agriculture, 8(1), 173-184.
  • Đokić, A., and Jović, S. (2017). Evaluation of agriculture and industry effect on economic health by ANFIS approach. Physica A: Statistical Mechanics and its Applications, 479, 396-399.
  • Erginel, N., & Şentürk, S. (2015). Intelligent Systems in Total Quality Management. In Intelligent Techniques in Engineering Management (pp. 407-430). Springer, Cham.
  • Hanoğlu Oral, H., Gökkuş, A., Alatürk F., 2017. Organik Sistemde Üretilen Boz Irk Sığırların Karkas ve Et Kalite Özellikleri. Gıda, Tarım ve Hayvancılık Bakanlığı, TAGEM, PROJE NO: TAGEM/HAYSÜT/137.
  • Ghanei, A., Jafari, F., Khotbehsara, M. M., Mohseni, E., Tang, W., and Cui, H. (2017). Effect of nano-CuO on engineering and microstructure properties of fibre-reinforced mortars incorporating metakaolin: Experimental and numerical studies. Materials, 10(10), 1215.
  • Houshyar, E., Smith, P., Mahmoodi-Eshkaftaki, M., and Azadi, H. (2017). Sustainability of wheat production in Southwest Iran: A fuzzy-GIS based evaluation by ANFIS. Cogent Food & Agriculture, 3(1), 1327682.
  • Jang, J.S.R., Sun, C.T. ve Mizutani, E., Neuro fuzzy and soft computing a computational approach to learning and machine intelligence, Prentice Hall, USA, 1997.
  • Jang, J.S.R., ANFIS: Adaptive-network based fuzzy inference systems,IEEE Trans. on Systems, Man and Cybernetics, 23, 665-685, 1993.
  • Jayashree, L. S., Rajathi, N., and Thirumal, A. (2016, November). Precision agriculture: On the accuracy of multilevel and clustered ANFIS models for sugarcane yield categorization. In 2016 IEEE Region 10 Conference (TENCON) (pp. 1983-1987). IEEE.
  • Kahraman, C., & Onar, S. Ç. (Eds.). (2015). Intelligent techniques in engineering management (Vol. 87). Springer.
  • Kaveh, M., Sharabiani, V. R., Chayjan, R. A., Taghinezhad, E., Abbaspour-Gilandeh, Y., and Golpour, I. (2018). ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Information Processing in Agriculture, 5(3), 372-387.
  • Khoshnevisan, B., Rafiee, S., Omid, M., and Mousazadeh, H. (2014). Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information processing in agriculture, 1(1), 14-22.
  • Kim, B., Park, J.H., Qualitative fuzzy logic model of plasma etching process, IEEE Transactions on Plasma Science, 30, 673-678, 2002. Mohaddes, S. A., and Fahimifard, S. M. (2018). Application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in Forecasting Agricultural Products Export Revenues (Case of Iran’s Agriculture Sector).
  • Montgomery, D.C., Design and analysis of experiments, 5th Edition, John Wiley & Sons Inc., USA, 2001.
  • Mosavi, M. R., Ayatollahi, A., & Afrakhteh, S. (2021). An efficient method for classifying motor imagery using CPSO-trained ANFIS prediction. Evolving systems, 12(2), 319-336.
  • Muluk, Z., Kurt, S., Toktamış, Ö.ve Karaağaoğlu, E., Deney tasarımında istatistiksel yöntemler, Ege Üniversitesi Fen Fakültesi Yayınları, No: 146, Ege Üniversitesi Yayınları, İzmir, 1994.
  • Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M. Y., and Alimardani, F. (2012). Application of ANFIS to predict crop yield based on different energy inputs. Measurement, 45(6), 1406-1413.
  • Navarro-Hellín, H., Martinez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., and Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131.
  • Nsikak, S. (2017). On The Goodness of Four Types of Organic Fertilizers Using the Split Plot Design and the Two-Way Block Design with Interactions. American Journal of Applied Mathematics and Statistics, 5(4), 136-144.
  • Piepho, H. P. (2019). A coefficient of determination (R2) for generalized linear mixed models. Biometrical journal, 61(4), 860-872.
  • Sabanci, K., Aslan, M. F., & Durdu, A. (2020). Bread and durum wheat classification using wavelet based image fusion. Journal of the Science of Food and Agriculture, 100(15), 5577-5585.
  • Sabanci, K., Kayabasi, A., & Toktas, A. (2017a). Computer vision‐based method for classification of wheat grains using artificial neural network. Journal of the Science of Food and Agriculture, 97(8), 2588-2593.
  • Sabanci, K., Toktas, A., & Kayabasi, A. (2017b). Grain classifier with computer vision using adaptive neuro‐fuzzy inference system. Journal of the Science of Food and Agriculture, 97(12), 3994-4000.
  • Saplioğlu, K., & Ramazan, A. C. A. R. (2020). K-Means Kümeleme Algoritması Kullanılarak Oluşturulan Yapay Zekâ Modelleri ile Sediment Taşınımının Tespiti. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(1), 306-322.
  • Shastry, A., Sanjay, H. A., and Hegde, M. (2015, June). A parameter based ANFIS model for crop yield prediction. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 253-257). IEEE.
  • Sirabahenda, Z., St-Hilaire, A., Courtenay, S. C., Alberto, A., and Van Den Heuvel, M. R. (2017). A modelling approach for estimating suspended sediment concentrations for multiple rivers influenced by agriculture. Hydrological Sciences Journal, 62(13), 2209-2221.
  • Sirabahenda, Z., St-Hilaire, A., Courtenay, S. C., and van den Heuvel, M. R. (2020). Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models. Catena, 195, 104762.
  • Srilakshmi, A., Rakkini, J., Sekar, K. R., and Manikandan, R. (2018). A comparative study on Internet of Things (IoT) and its applications in smart agriculture. Pharmacognosy Journal, 10(2).
  • Suesca, E., Dias, A. M. A., Braga, M. E. M., De Sousa, H. C., & Fontanilla, M. R. (2017). Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Materials Science and Engineering: C, 77, 333-341.
  • Şentürk, S. (2010). FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Journal of Science and Technology of Dumlupınar University, (022), 57-74.
  • Yılmaz, N.A.Ş., Alparslan, F.N. ve Jain, L., ANFIS-unfolded –in-time for multivariate time series forecasting, Neurocomputing, 61, 139-168, 2004.

Using ANOVA and ANFİS Approaches in Modelling Agricultural Experiments

Year 2022, , 574 - 597, 23.07.2022
https://doi.org/10.30910/turkjans.1101600

Abstract

Adaptive Neuro-Fuzzy Inference System (ANFIS) can analyze the factors and factor levels affecting the subject of interest in many branches such as technology, production, health, social and education, depending on the many rules it creates and with a very small experimental error (RMSE). and modelling. It is also applied in the field of agriculture, especially for the solution of problems such as agricultural field selection or technological product development. On the other hand, classical statistical methods are generally used in due diligence studies in a certain time period, such as product cultivation. Experimental design methods or in other words analysis of variance (ANOVA) methods come first among these methods. With the experiments modeled by ANOVA, the factors affecting the subject of interest and the levels of these factors are analyzed according to a single rule of the method used. Since the Root Mean Square Error (RMSE) of the model formed by the multiple rules of ANFIS versus the single rule of ANOVA is much smaller, it gives stronger results. Modeling agricultural products with ANFIS depending on time will support data mining studies in this field. In this study, first both ANOVA and ANFIS methods were briefly explained, and then the data of a due diligence study carried out in agriculture were modeled by both methods and similar findings were obtained. However, mostly the standard deviation (RMSE) values of ANFIS were found to be smaller than ANOVA. In addition, the relationships between ANFIS outputs and real measurements were examined.

References

  • Dahmardeh, M. E. H. D. I., Keshtega, B., & Piri, J. A. M. S. H. I. D. (2017). Assessment chemical properties of soil in intercropping using ANN and ANFIS models. Bulgarian Journal of Agricultural Science, 23(2), 265-273.
  • Del Cerro, R. T. G., Subathra, M. S. P., Kumar, N. M., Verrastro, S., & George, S. T. (2021). Modelling the daily reference evapotranspiration in semi-arid region of South India: a case study comparing ANFIS and empirical models. Information Processing in Agriculture, 8(1), 173-184.
  • Đokić, A., and Jović, S. (2017). Evaluation of agriculture and industry effect on economic health by ANFIS approach. Physica A: Statistical Mechanics and its Applications, 479, 396-399.
  • Erginel, N., & Şentürk, S. (2015). Intelligent Systems in Total Quality Management. In Intelligent Techniques in Engineering Management (pp. 407-430). Springer, Cham.
  • Hanoğlu Oral, H., Gökkuş, A., Alatürk F., 2017. Organik Sistemde Üretilen Boz Irk Sığırların Karkas ve Et Kalite Özellikleri. Gıda, Tarım ve Hayvancılık Bakanlığı, TAGEM, PROJE NO: TAGEM/HAYSÜT/137.
  • Ghanei, A., Jafari, F., Khotbehsara, M. M., Mohseni, E., Tang, W., and Cui, H. (2017). Effect of nano-CuO on engineering and microstructure properties of fibre-reinforced mortars incorporating metakaolin: Experimental and numerical studies. Materials, 10(10), 1215.
  • Houshyar, E., Smith, P., Mahmoodi-Eshkaftaki, M., and Azadi, H. (2017). Sustainability of wheat production in Southwest Iran: A fuzzy-GIS based evaluation by ANFIS. Cogent Food & Agriculture, 3(1), 1327682.
  • Jang, J.S.R., Sun, C.T. ve Mizutani, E., Neuro fuzzy and soft computing a computational approach to learning and machine intelligence, Prentice Hall, USA, 1997.
  • Jang, J.S.R., ANFIS: Adaptive-network based fuzzy inference systems,IEEE Trans. on Systems, Man and Cybernetics, 23, 665-685, 1993.
  • Jayashree, L. S., Rajathi, N., and Thirumal, A. (2016, November). Precision agriculture: On the accuracy of multilevel and clustered ANFIS models for sugarcane yield categorization. In 2016 IEEE Region 10 Conference (TENCON) (pp. 1983-1987). IEEE.
  • Kahraman, C., & Onar, S. Ç. (Eds.). (2015). Intelligent techniques in engineering management (Vol. 87). Springer.
  • Kaveh, M., Sharabiani, V. R., Chayjan, R. A., Taghinezhad, E., Abbaspour-Gilandeh, Y., and Golpour, I. (2018). ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Information Processing in Agriculture, 5(3), 372-387.
  • Khoshnevisan, B., Rafiee, S., Omid, M., and Mousazadeh, H. (2014). Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information processing in agriculture, 1(1), 14-22.
  • Kim, B., Park, J.H., Qualitative fuzzy logic model of plasma etching process, IEEE Transactions on Plasma Science, 30, 673-678, 2002. Mohaddes, S. A., and Fahimifard, S. M. (2018). Application of Adaptive Neuro-Fuzzy Inference System (ANFIS) in Forecasting Agricultural Products Export Revenues (Case of Iran’s Agriculture Sector).
  • Montgomery, D.C., Design and analysis of experiments, 5th Edition, John Wiley & Sons Inc., USA, 2001.
  • Mosavi, M. R., Ayatollahi, A., & Afrakhteh, S. (2021). An efficient method for classifying motor imagery using CPSO-trained ANFIS prediction. Evolving systems, 12(2), 319-336.
  • Muluk, Z., Kurt, S., Toktamış, Ö.ve Karaağaoğlu, E., Deney tasarımında istatistiksel yöntemler, Ege Üniversitesi Fen Fakültesi Yayınları, No: 146, Ege Üniversitesi Yayınları, İzmir, 1994.
  • Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M. Y., and Alimardani, F. (2012). Application of ANFIS to predict crop yield based on different energy inputs. Measurement, 45(6), 1406-1413.
  • Navarro-Hellín, H., Martinez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., and Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131.
  • Nsikak, S. (2017). On The Goodness of Four Types of Organic Fertilizers Using the Split Plot Design and the Two-Way Block Design with Interactions. American Journal of Applied Mathematics and Statistics, 5(4), 136-144.
  • Piepho, H. P. (2019). A coefficient of determination (R2) for generalized linear mixed models. Biometrical journal, 61(4), 860-872.
  • Sabanci, K., Aslan, M. F., & Durdu, A. (2020). Bread and durum wheat classification using wavelet based image fusion. Journal of the Science of Food and Agriculture, 100(15), 5577-5585.
  • Sabanci, K., Kayabasi, A., & Toktas, A. (2017a). Computer vision‐based method for classification of wheat grains using artificial neural network. Journal of the Science of Food and Agriculture, 97(8), 2588-2593.
  • Sabanci, K., Toktas, A., & Kayabasi, A. (2017b). Grain classifier with computer vision using adaptive neuro‐fuzzy inference system. Journal of the Science of Food and Agriculture, 97(12), 3994-4000.
  • Saplioğlu, K., & Ramazan, A. C. A. R. (2020). K-Means Kümeleme Algoritması Kullanılarak Oluşturulan Yapay Zekâ Modelleri ile Sediment Taşınımının Tespiti. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(1), 306-322.
  • Shastry, A., Sanjay, H. A., and Hegde, M. (2015, June). A parameter based ANFIS model for crop yield prediction. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 253-257). IEEE.
  • Sirabahenda, Z., St-Hilaire, A., Courtenay, S. C., Alberto, A., and Van Den Heuvel, M. R. (2017). A modelling approach for estimating suspended sediment concentrations for multiple rivers influenced by agriculture. Hydrological Sciences Journal, 62(13), 2209-2221.
  • Sirabahenda, Z., St-Hilaire, A., Courtenay, S. C., and van den Heuvel, M. R. (2020). Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models. Catena, 195, 104762.
  • Srilakshmi, A., Rakkini, J., Sekar, K. R., and Manikandan, R. (2018). A comparative study on Internet of Things (IoT) and its applications in smart agriculture. Pharmacognosy Journal, 10(2).
  • Suesca, E., Dias, A. M. A., Braga, M. E. M., De Sousa, H. C., & Fontanilla, M. R. (2017). Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Materials Science and Engineering: C, 77, 333-341.
  • Şentürk, S. (2010). FAKTÖRİYEL TASARIMA ADAPTİF AĞ TABANLI BULANIK MANTIK ÇIKARIM SİSTEMİ İLE FARKLI BİR YAKLAŞIM. Journal of Science and Technology of Dumlupınar University, (022), 57-74.
  • Yılmaz, N.A.Ş., Alparslan, F.N. ve Jain, L., ANFIS-unfolded –in-time for multivariate time series forecasting, Neurocomputing, 61, 139-168, 2004.
There are 32 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Zeynep Gökkuş 0000-0003-2767-8420

Sevil Şentürk

Firat Alatürk 0000-0003-3394-5855

Hülya Hanoğlu Oral 0000-0003-3626-9637

Ahmet Gökkuş

Publication Date July 23, 2022
Submission Date April 11, 2022
Published in Issue Year 2022

Cite

APA Gökkuş, Z., Şentürk, S., Alatürk, F., Hanoğlu Oral, H., et al. (2022). Using ANOVA and ANFİS Approaches in Modelling Agricultural Experiments. Turkish Journal of Agricultural and Natural Sciences, 9(3), 574-597. https://doi.org/10.30910/turkjans.1101600