Toprak sıcaklığı, toprağın birçok özelliğini etkilediği gibi bitki gelişimi süreçlerinde de önemli düzeyde etki yapmaktadır. Toprak sıcaklığının bilinmesi ve doğru tahmini hem toprak yönetimi hem de bitkisel üretim için önem arzetmektedir. Özelliklede tarıma dayalı ekonomileriyle öne çıkan ülkeler için sıcaklık tahminlerinin doğrululuğu çok önemlidir. Bu yüzden son yıllarda toprak sıcaklık tahminlerinde farklı yapay zeka yöntemleri kullanılmaya başlanmıştır. Derin öğrenme yöntemleri yüksek tahmin doğruluğu elde etmede bu konuda öncülük etmektedir. Bu çalışmada toprak sıcaklığı tahmininde etkin bir model oluşturmak için derin öğrenme (DL) alt mimarisi olan Uzun Kısa Süreli Bellek (LSTM) ağı önerilmiştir. Çalışmada kullanılan veriler Bingöl İline ait 2013-2021 yıllarına ait 50 cm derinlikteki günlük toprak sıcaklıklarıdır. Çalışma kapsamındaki veri setinin %80’ni önerilen LSTM modelinin eğitimi için kullanılmıştır. Geriye kalan %20’si ise model tarafından tahmin edilerek model başarısı ölçülmüştür. Eğitilen LSTM modelinin yapmış olduğu tahmin sonucundaki RMSE değeri 1.25 olarak elde edilmiştir. Önerilen modelin tahmin doğruluğunun yüksek olması, sıcaklık verileri tahmini çalışmalarında bu modelin başarılı bir şekilde uygulanabileceğini göstermiştir.
Bingöl İli Meteoroloji Müdürlüğü’nün bilimsel çalışmaları destek amacıyla, bu çalışma için sunmuş olduğu meteorolojik bilgiler için teşekkür ediyoruz.
Soil temperature not only affects many soil properties, but also has a significant effect on plant development. Knowing and correct estimation of soil temperature is important for both soil management and crop production. The accuracy of temperature forecasts is very important, especially for the countries that stand out with their agriculture-based economies. Therefore, in recent years, different artificial intelligence methods have been used in soil temperature predictions. Deep learning methods lead the way in achieving high prediction accuracy. In this study, a Long Short-Term Memory (LSTM) network, which is a deep learning (DL) sub-architecture, is proposed to create an effective model for soil temperature prediction. The data used in the study are the daily soil temperatures at a depth of 50 cm for the years 2013-2021 of Bingöl province. For the training of the proposed LSTM model, 89% of the data set within the scope of the study was used, and. The remaining 11% was estimated by the model for assessing model success. The RMSE value as a result of the estimation made by the trained LSTM model was obtained as 1,25. The high estimation accuracy of the proposed model showed that this model could be successfully applied in temperature data estimation studies.
Primary Language | English |
---|---|
Subjects | Agricultural, Veterinary and Food Sciences |
Journal Section | Research Articles |
Authors | |
Publication Date | July 23, 2022 |
Submission Date | April 12, 2022 |
Published in Issue | Year 2022 |