Research Article
BibTex RIS Cite

Kantitatif Karakter Lokus Analizi ile Nohutta (Cicer arietinum L.) Kuraklık Toleransı Üzerine Bir Çalışma

Year 2023, , 318 - 329, 25.04.2023
https://doi.org/10.30910/turkjans.1255993

Abstract

Nohut bitkisi bitkisel kaynaklı protein temini açısından oldukça önemli bir bitki olup son yıllarda iklim değişikliğinin getirdiği kuraklık sorunu üretimi sınırlamaya başlamıştır. Bunun sonucu olarak ıslah programlarının bu yöne doğru yönlendirilmesi gerekliliği ortaya çıkmıştır. Bu çalışma ile Kırşehir ilinden toplanan yerel nohut genotiplerinin kuraklığa toleransı ile genetik olarak bunun bağlantılı bölgelerin tespit edilmesi amaçlanmıştır. Bunun için toplanan 67 nohut genotipi içinden kuraklığa toleranslı görülen KMNG-27 ile KKNG-09 genotiplerinin çaprazlanması ile elde edilen KGN-15 genotipi üzerinde çalışılmıştır. Çalışmada incelenen özellikler çimlenmeye kadar geçen gün sayısı, çiçeklenme gün sayısı, bitki boyu, bitki başına bakla sayısı, biyolojik verim, 100 tane ağırlığı, hasat indeksi, bağıl yaprak su içeriği, membran geçirgenlik indeksi, su alma indeksi, verim, kök uzunluğu, kök sürgün uzunluğu, kök sürgün oranı, kök taze ağırlığı, taze sürgün ağırlığı, kök kuru ağırlığı, sürgün kuru ağırlığı ve kök kuru ağırlığının toplam bitki kuru ağırlığına oranıdır.
Sonuç olarak Yozgat ilinin Kırşehir iline göre yağış dağılımının daha düzenli olması nedeniyle fenotipik ve genotipik özellikler bakımından daha iyi durumda olduğu görülmüştür. Kullanılan 23 QTL’den 6’sı majör etkili olurken 17’si ise minör etkili olarak belirlenmiştir. Elde edilen sonuçlara göre pozitif bir etkiye sahip olan QTL’lerin donör ebeveyn alellerinin özellik değerlerinin artırılmasına katkıda bulunabileceğini göstermiştir. Negatif etkiye sahip olanlar ise alıcı konumunda bulunan ebeveynin daha yüksek özelliğe sahip olduğunu göstermiştir. Her iki lokasyon için toprak üstü kısımlar için Kırşehir için 6 QTL ve Yozgat için 7 QTL tanımlanırken kök ile ilgili özellikler için incelenen özellikler için Kırşehir için 11 QTL ve Yozgat için 4 QTL tanımlanmıştır.

Supporting Institution

YOK

Project Number

YOK

Thanks

YOK

References

  • Aldemir, Ö., Ceyhan, E. 2015. Salinity response of some chickpea (Cicer arietinum L.) genotypes in germination and seedling growth of periods. ICAE 2015: 17th International Conference on Agricultural Engineering, 17(12): 668-674.
  • Altınbaş, M., Sepetoğlu, H. 2001. Investigations on yield and some agricultural characteristics of newly developed chickpea lines in Bornova conditions. Journal of Ege University Faculty of Agriculture, 3 (2-3): 39-46.
  • Altınbaş, M. 2004. Harvest index stability and its relationship with grain yield in winter chickpeas. Journal of Ege University Faculty of Agriculture, 41 (3): 111-121. Becker, H. C. 1981. Correlation among some statistical measures of phenotypic stability, Eupytica, 30: 839-840.
  • Breese, E. L. 1969. The measurement and significance of genotype x environment interactions in grasses. Heredity, 24: 27-44.
  • Comstock, R. E., Moll, R. H. 1963. Genotype x Environment intaractions. Statistical Genetics and Plant Breeding, 164-196 p, NAS-NRC. Publ.
  • Ceyhan, E., Kahraman, A., Önder, M., Ateş, M. K., Karadaş, S., Topak, R., Avcı, M. A. 2012a. Physiological and biochemical responses to drought stress of chickpea genotypes. World Academy of Science, Engineering and Technology, 66: 383-388.
  • Ceyhan, E., Önder, M., Kahraman, A., Topak, R., Ateş, M. K., Karadas, S., Avcı, M. A. 2012b. Effects of drought on yield and some yield components of chickpea. World Academy of Science, Engineering and Technology, 66: 378-382.
  • Çancı, H., Toker, C. 2009. Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 195 (1): 47-54.
  • Çevik, B. 2020. Irrigation and Drainage-Irrigation and Drainage Engineering in Agriculture. Academician Bookstore.
  • Doğan, İ., Doğan, N., Akçan, A., Korkmaz, Ü. 1998. The importance of kinship coefficient in heritability estimation and a computer program. Journal of Lalahan Livestock Research Ins., 38 (1): 85-93.
  • Doligez, A., Bouquet, A., Danglot, Y., Lahogue, F., Riaz, S., Meredith, C. P., Edwards, K. J., This, P. 2002. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet., 105: 780-795.
  • Dumanoğlu, Z., Özdemir, S., Kökten, K. 2022. Physical properties of seeds of some chickpea (Cicer arietinum L.) cultivars. Journal of Agricultural Engineering, 376: 42-47.
  • Düzdemir, O., Akdağ, C. 2007. Determination of genotype x environment interactions of some chickpea (Cicer arietinum L.) cultivars.. Journal of Gazi Osman Paşa University Faculty of Agriculture, 24 (1): 27-34.
  • Düzgüneş, O., Akman, N. 1985. Variation Sources. Ankara University Faculty of Agriculture Publications, Ankara.
  • Düzgüneş, O., Eliçin, A., Akman, N. 1987. Animal Breeding. Ankara University Faculty of Agriculture Publications, 1003, Ankara.
  • Fernando, R. L., Gianola, D. 1986. Effect of assortative mating on genetic change due to selection. Theoretical and Applied Genetics, 72: 395-404.
  • Gaur, P. M., Jukanti, A. K., Varshney, R. K. 2012. The impact of genomic technologies on chickpea growing strategies. Agricultural Science, 2: 199-221.
  • Gökmen, E., Ceyhan, E. 2015. Effects of drought stress on growth parameters, enzyme activates and proline content in chickpea genotypes. Bangladesh Journal of Botany, 44 (2): 177-183.
  • Güngör, H., Dumlupınar, Z. 2018. Evaluation of some chickpea varieties and lines in terms of yield and yield elements. Derim, 35 (2): 194-200.
  • Hajjarpoor, A., Soltani, A., Zeinali, E., Kashiri, H., Aynehband, A., Vadez, V. 2018. Using boundary line analysis to assess the on-farm crop yield gap of wheat. F. Crop. Res., 225: 64-73.
  • Hall, A. J., Richards, R. A. 2013. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. F. Crop. Res., 143: 18-33.
  • Hassan, G., Khan, I. 2007. Postemergence herbicidal control of Asphadelus tenuifolius in desi chickpea, Cicer arietinum L. at Lakki Marwat, Pakistan. Pakistan Journal of Weed Science Research, 13: 33-38.
  • ICARDA-FSP, 1986. Annual Report. Aleppo, Syria.
  • İşçi, B. 2008. QTL (Quantitative Character Locus) analysis in grapevine. Anadolu of AARI, 18 (2):11-37.
  • İşlek, M. M., Ceyhan, E. 2016. The effects of different plant density on grain yield and some agricultural characteristics in chickpea. Selcuk Journal of Agricultural Sciences, 3 (1): 1-7.
  • Jones, V. A. S., Dolan, L. 2012. The evolution of root hairs and rhizoids. Ann. Bot., 110: 205-212.
  • Kaçar, O., Göksu, E., Azkan, N. 2005. Determination of chickpea (Cicer arietinum L.) lines that can be grown in Bursa in winter. Journal of Uludag University Faculty of Agriculture, 19 (2): 33-45.
  • Kahraman, A., Ceyhan, E., Onder, M., Topak, R., Avcı, M. A. 2012. Drought resistance indices of chickpea (Cicer arietinum L.) germplasm. Selcuk Journal of Agriculture and Food Sciences, 30 (1): 39-43.
  • Kantar, F., Elkoca, E., Zengin, H. 1999. Chemical and agronomical weed control in chickpea (Cicer arietinum L. cv. Aziziye-94). Turkish Journal of Agriculture and Forestry, 23: 631-635.
  • Karadavut, U., Tozluca, A. 2005. Growth analysis of some characters in rye plant (Secale cereale L.): Above-ground and root growth. Journal of Herbal Studies, 2 (1): 1-10.
  • Karadavut, U., Sözen, Ö. 2020. Determination of some agronomic and physiological properties of chickpea (Cicer arietinum L.) plants growed in different planting times. Turkish journal of Agricultural and natural Sciences, 7 (4): 904-912.
  • Karaköy, T., Kökten, K., Toklu, F. 2012. Response of some chickpea (Cicer arietinum L.) genotypes to salt stress conditions. Journal of Food, Agriculture & Environment, 10 (3-4): 337-341.
  • Karaman, H., Atar, B., Çobanoğlu Aktan, D. 2017. Comparison of factor extraction methods used in exploratory factor analysis. Journal of Gazi University Gazi Education Faculty, 37 (3): 1173-1193.
  • Kashiwagi, J., Krishnamurthy, L., Crouch, J. H., Serraj, R. 2006. The variability of root length density in chickpeas (Cicer arietinum L.) under the stress of recent drought and their contribution to seed yield. Field Crops Res., 95: 171-181.
  • Kaytan, V. 2006. The effects of different doses of zinc on the agricultural properties of chickpeas in western passage conditions. Osmangazi University Institute of Science and Technology Master Thesis, Eskişehir.
  • Krishnamurthy, L., Kashiwagi, J., Gaur, P. M., Upadhyaya, H. D., Vadez, V. 2010. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) mini core germplasm. Field Crops Res., 119: 322-330.
  • Kumar, T., Bharadwaj, C., Rizvi, A. H., Sarker, A., Tripathi, S., Alam, A., Chauhan, S. K. 2015. Chickpea landraces: A valuable and divergent source for drought tolerance. Int. J. Trop. Agric., 33: 633-638.
  • Kumlu, S. 2003. Animal Breeding. Turkish Cattle Breeders Central Association Publications. Publication No:1, Ankara.
  • Kushwah, A., Bindra, S., Singh, I., Dixit, G. P, Sharma, P., Srinivasan, S., Gaur, P.M., Singh, S. 2020. Advances in chickpea breeding and genomics for cultivar development and trait improvement in India. Accelerate. Plant Breed, 3: 31-66.
  • Mart, D. 2000. A study on the determination of genotype x environment interactions and adaptability in terms of some important characteristics of chickpea (Cicer arietinum L.) in Çukurova conditions. Çukurova University Graduate School of Natural and Applied Sciences, Department of Field Crops, PhD Thesis, Adana.
  • Mart, D., Cansaran, E., Karaköy, T. 2005. A research on the determination of genotype x environment interactions and adaptability in terms of some characteristics of chickpea (Cicer arietinum L.) in Çukurova conditions. Turkey 6th Field Crops Congress, 1027-1032.
  • Misra, R. C. 1991. Stability of heritability, genetic advance, and character association estimates in chickpea. International Chickpea Newsletter, 25: 10-11.
  • Moose, S. P., Mumm, R. H. 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol, 147 (3): 969-977.
  • Nakajima, K., Sena, G., Nawy, T., Benfey, P. N. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 413: 307-311.
  • Örs, S., Ekinci, M. 2015. Drought stress and plant physiology. Derim, 32 (2): 237-250.
  • Percy, R. G., Cantrell, R. G., Zhang, J. 2006. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci., 46 (3): 1311-1317.
  • Plackett, A. R. G., Huang, L., Sanders, H. L., Langdale, J. A. 2014. High efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. Plant Physiol, 165 (1): 3-14.
  • Pundir, R. P. S., Rao, N. K., Van der Maesen, L. J. G. 1985. Distribution of qualitative traits in the world germ-plasm of chickpea. Euphytica, 34: 697-703.
  • Puritz, J. B., Matz, M. V., Toonen, R. J., Weber, J. N., Bolnick, D. I., Bird, C. E. 2014. Solving the mystery of the RAD ambition. Mol. Ekol., 23: 5937-5942.
  • Purushothaman, R., Krishnamurthy, L., Upadhyaya, H D, Vadez, V., Varshney, R. K. 2016. Chickpea (Cicer arietinum L.) shoot characteristics and its relationship with tolerance to recent drought. Field Crops Res., 197: 10-27.
  • Ram, S. G., Thiruvengadam, V., Vinod, K. K. 2007. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Appl. Genet., 48 (4): 337-345.
  • Raven, J. A., Edwards, D. 2001. Roots: evolutionary origins and biogeochemical significance. Journal Exp. Bot., 52: 381-401.
  • Rogers, H. H., Prior, S. A., Runion, G. B., Mitchell, R. J. 1996. Root to shoot ratio of crops as influenced by CO2. Plant Soil, 187: 229-248.
  • Sabaghpour, S. H., Mahmoudi, A. A., Saeed, A., Iraj, K. 2018. Study of chickpea drought tolerance lines under dryland conditions of Iran. Indian J. Crop Sci., 1: 70-73.
  • Salsman, K. J., Jordan, D. N., Smith, S. D., Neuman, D. S. 1999. Effect of atmo-spheric enrichment on root growth and carbohydrate allocation of Phaseolus spp. Int. J. Plant Sci., 160: 1075-1081.
  • Saxena, N. P., Kapoor, S. N., Bisht, D. S. 1983. Emergence of chickpea seedlings in suboptimal seedbed moisture. International Chickpea Newsletter, 9: 12-14.
  • Sayılgan, Ç., Kocatürk, M. 2019. Evaluation of yield performance of some registered and landraces chickpea varieties in the Western Mediterranean Region. Derim, 36 (2): 207-216.
  • Sciarresi, C., Patrignani, A., Soltani, A., Sinclair, T., Lollato, R. P. 2019. Plant traits to increase winter wheat yield in semiarid and subhumid environments. Agron. J., 111: 1728-1740.
  • Scotland, R. W. 2010. Deep homology: a view from systematics. Bioessays, 32: 438-449. Seber, S. A. F., Wild, C. J. 1989. Non linear Regression. John Wiley&Sons, Inc. USA.
  • Shah, R. M., Pathak, A. R., Zaveri, P. P., Patel, J. A., Patel, P. K. 1983. Genotype x environment interaction and stability analysis for yield in chickpea. Inter. Chickpea Newsletter, 8: 9-10.
  • Singh, K. B., Bejiga, G., Malhotra, R. S. 1990. Associations of some characters with seed yield in chickpea collection. Euphytica, 49: 83-88.
  • Sivashakthi, S., Thudi, M., Tharanya, M., Kale, S. M, Kholova, J., Halime, M. H, Jaganathan, D., Baddam, R., Thirunalasundrai, T., Gaur, P. M., Varsney, R. K., Vadez, V. 2018. Plant viability QTLs are co-mapped with a previously reported QTL-hotspot for drought tolerance, while water-saving QTLs pair up in other regions of the chickpea genome. BMC Plant Biol., 18: 29.
  • Stephens, A., Lombardi, M., Cogan, N. O. I., Forster, J. W., Hobson, K., Materne, M., Kaur, S. 2014. Genetic marker discovery of ascochyta blight resistance in chickpeas (Cicer arietinum L.), intra-species link map construction and quantitative feature locus analysis. Mol. Breed., 33: 297-313.
  • Stupak, M., Vanderschuren, H., Gruissem, W., Zhang, P. 2006. Biotechnological approaches to cassava protein improvement. Trends Food Sci. Technol., 17 (12): 634-641.
  • Şehirali, S. 1988. Legumes. Ankara University Faculty of Agriculture Publications, Ankara.
  • Tabachnick, B. G., Fidel, L. S. 2014. Using Multivariate Statistics. (Sixth Edition). USA: Pearson Education Limited.
  • Teuling, A. J., Van Loon, A., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., Spank, U. 2013. Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40 (10): 2071-2075.
  • Thudi, M., Bohra, A., Nayak, S. N., Varghese, N., Shah, T. M., Penmetsa, R. V., Thirunavukkarasu, N., Gudipati, S., Gaur, P. M., Kulwal, P. L., Upadhyaya, H. D., Kavikishor, P. B., Winter, P., Kahl, G., Town, C. D., Kilian, A., Cook, D. R., Varshney, R. K. 2011. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS One, 6 (11): e27275.
  • Topalak C., Ceyhan, E. 2015. The effects of seed yield and some agricultural characters of different sowing dates on chickpea. Selçuk Tarım Bilimleri Dergisi, 2 (2): 130-139.
  • Van Dijk, M., Morley, T., Jongeneel, R., Van Ittersum, M., Reidsma, P., Ruben, R. 2017. Disentangling agronomic and economic yield gaps: an integrated framework and application. Agric. Syst., 154: 90-99.
  • Varshney. R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., Baek, J., Rosen, B. D., Tar'an, B., Millan, T., Zhang, X., Ramsay, L. D., Iwata, A., Wang, Y., Nelson, W., Farmer, A. D., Gaur, P. M., Soderlund, C., Penmetsa, R. V., Xu, C., Bharti, A. K., He, W., Winter, P., Zhao, S., Hane, J. K., Carrasquilla-Garcia, N., Condie, J. A., Upadhyaya, H. D., Luo, M. C., Thudi, M., Gowda, C. L., Singh, N. P., Lichtenzveig, J., Gali, K. K., Rubio, J., Nadarajan, N., Dolezel, J., Bansal, K. C., Xu, X., Edwards, D., Zhang, G., Kahl, G., Gil, J., Singh, K. B., Datta, S. K., Jackson, S. A., Wang, J., Cook, D. R. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol, 31 (3): 240-246.
  • Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J., Krishnamurthy, L., Jaganathan, D., Koppolu, J., Bohra, A., Tripathi, S., Rathore, A., Jukanti, A. K., Jayalakshmi, V., Vemula, A., Singh, S. J., Yasin, M., Shehshayee, M. S., Viswanatha, K. P. 2014. Genetic dissection of drought tolerance in chickpeas (Cicer arietinum L.). Theory. Application Genetic, 127: 445-462.
  • Wang, S., Basten, C. J., Zeng, Z. B. 2007. Windows QTL cartographer 2.5. Raleigh, NC: Department of Statisitcal, North Carolina State University.
  • Wood, H. J., Hunt, J. D. 1997. Modelling the growth of feather crystals. Acta Materialia, 45 (2):569-574. Yıldız, M., Kaya, F., Terzi, H. 2020. Drought Stress and Plant Proteomics. Gümüşhane University Journal of Science, 10 (1): 286-297.
Year 2023, , 318 - 329, 25.04.2023
https://doi.org/10.30910/turkjans.1255993

Abstract

Project Number

YOK

References

  • Aldemir, Ö., Ceyhan, E. 2015. Salinity response of some chickpea (Cicer arietinum L.) genotypes in germination and seedling growth of periods. ICAE 2015: 17th International Conference on Agricultural Engineering, 17(12): 668-674.
  • Altınbaş, M., Sepetoğlu, H. 2001. Investigations on yield and some agricultural characteristics of newly developed chickpea lines in Bornova conditions. Journal of Ege University Faculty of Agriculture, 3 (2-3): 39-46.
  • Altınbaş, M. 2004. Harvest index stability and its relationship with grain yield in winter chickpeas. Journal of Ege University Faculty of Agriculture, 41 (3): 111-121. Becker, H. C. 1981. Correlation among some statistical measures of phenotypic stability, Eupytica, 30: 839-840.
  • Breese, E. L. 1969. The measurement and significance of genotype x environment interactions in grasses. Heredity, 24: 27-44.
  • Comstock, R. E., Moll, R. H. 1963. Genotype x Environment intaractions. Statistical Genetics and Plant Breeding, 164-196 p, NAS-NRC. Publ.
  • Ceyhan, E., Kahraman, A., Önder, M., Ateş, M. K., Karadaş, S., Topak, R., Avcı, M. A. 2012a. Physiological and biochemical responses to drought stress of chickpea genotypes. World Academy of Science, Engineering and Technology, 66: 383-388.
  • Ceyhan, E., Önder, M., Kahraman, A., Topak, R., Ateş, M. K., Karadas, S., Avcı, M. A. 2012b. Effects of drought on yield and some yield components of chickpea. World Academy of Science, Engineering and Technology, 66: 378-382.
  • Çancı, H., Toker, C. 2009. Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). Journal of Agronomy and Crop Science, 195 (1): 47-54.
  • Çevik, B. 2020. Irrigation and Drainage-Irrigation and Drainage Engineering in Agriculture. Academician Bookstore.
  • Doğan, İ., Doğan, N., Akçan, A., Korkmaz, Ü. 1998. The importance of kinship coefficient in heritability estimation and a computer program. Journal of Lalahan Livestock Research Ins., 38 (1): 85-93.
  • Doligez, A., Bouquet, A., Danglot, Y., Lahogue, F., Riaz, S., Meredith, C. P., Edwards, K. J., This, P. 2002. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet., 105: 780-795.
  • Dumanoğlu, Z., Özdemir, S., Kökten, K. 2022. Physical properties of seeds of some chickpea (Cicer arietinum L.) cultivars. Journal of Agricultural Engineering, 376: 42-47.
  • Düzdemir, O., Akdağ, C. 2007. Determination of genotype x environment interactions of some chickpea (Cicer arietinum L.) cultivars.. Journal of Gazi Osman Paşa University Faculty of Agriculture, 24 (1): 27-34.
  • Düzgüneş, O., Akman, N. 1985. Variation Sources. Ankara University Faculty of Agriculture Publications, Ankara.
  • Düzgüneş, O., Eliçin, A., Akman, N. 1987. Animal Breeding. Ankara University Faculty of Agriculture Publications, 1003, Ankara.
  • Fernando, R. L., Gianola, D. 1986. Effect of assortative mating on genetic change due to selection. Theoretical and Applied Genetics, 72: 395-404.
  • Gaur, P. M., Jukanti, A. K., Varshney, R. K. 2012. The impact of genomic technologies on chickpea growing strategies. Agricultural Science, 2: 199-221.
  • Gökmen, E., Ceyhan, E. 2015. Effects of drought stress on growth parameters, enzyme activates and proline content in chickpea genotypes. Bangladesh Journal of Botany, 44 (2): 177-183.
  • Güngör, H., Dumlupınar, Z. 2018. Evaluation of some chickpea varieties and lines in terms of yield and yield elements. Derim, 35 (2): 194-200.
  • Hajjarpoor, A., Soltani, A., Zeinali, E., Kashiri, H., Aynehband, A., Vadez, V. 2018. Using boundary line analysis to assess the on-farm crop yield gap of wheat. F. Crop. Res., 225: 64-73.
  • Hall, A. J., Richards, R. A. 2013. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. F. Crop. Res., 143: 18-33.
  • Hassan, G., Khan, I. 2007. Postemergence herbicidal control of Asphadelus tenuifolius in desi chickpea, Cicer arietinum L. at Lakki Marwat, Pakistan. Pakistan Journal of Weed Science Research, 13: 33-38.
  • ICARDA-FSP, 1986. Annual Report. Aleppo, Syria.
  • İşçi, B. 2008. QTL (Quantitative Character Locus) analysis in grapevine. Anadolu of AARI, 18 (2):11-37.
  • İşlek, M. M., Ceyhan, E. 2016. The effects of different plant density on grain yield and some agricultural characteristics in chickpea. Selcuk Journal of Agricultural Sciences, 3 (1): 1-7.
  • Jones, V. A. S., Dolan, L. 2012. The evolution of root hairs and rhizoids. Ann. Bot., 110: 205-212.
  • Kaçar, O., Göksu, E., Azkan, N. 2005. Determination of chickpea (Cicer arietinum L.) lines that can be grown in Bursa in winter. Journal of Uludag University Faculty of Agriculture, 19 (2): 33-45.
  • Kahraman, A., Ceyhan, E., Onder, M., Topak, R., Avcı, M. A. 2012. Drought resistance indices of chickpea (Cicer arietinum L.) germplasm. Selcuk Journal of Agriculture and Food Sciences, 30 (1): 39-43.
  • Kantar, F., Elkoca, E., Zengin, H. 1999. Chemical and agronomical weed control in chickpea (Cicer arietinum L. cv. Aziziye-94). Turkish Journal of Agriculture and Forestry, 23: 631-635.
  • Karadavut, U., Tozluca, A. 2005. Growth analysis of some characters in rye plant (Secale cereale L.): Above-ground and root growth. Journal of Herbal Studies, 2 (1): 1-10.
  • Karadavut, U., Sözen, Ö. 2020. Determination of some agronomic and physiological properties of chickpea (Cicer arietinum L.) plants growed in different planting times. Turkish journal of Agricultural and natural Sciences, 7 (4): 904-912.
  • Karaköy, T., Kökten, K., Toklu, F. 2012. Response of some chickpea (Cicer arietinum L.) genotypes to salt stress conditions. Journal of Food, Agriculture & Environment, 10 (3-4): 337-341.
  • Karaman, H., Atar, B., Çobanoğlu Aktan, D. 2017. Comparison of factor extraction methods used in exploratory factor analysis. Journal of Gazi University Gazi Education Faculty, 37 (3): 1173-1193.
  • Kashiwagi, J., Krishnamurthy, L., Crouch, J. H., Serraj, R. 2006. The variability of root length density in chickpeas (Cicer arietinum L.) under the stress of recent drought and their contribution to seed yield. Field Crops Res., 95: 171-181.
  • Kaytan, V. 2006. The effects of different doses of zinc on the agricultural properties of chickpeas in western passage conditions. Osmangazi University Institute of Science and Technology Master Thesis, Eskişehir.
  • Krishnamurthy, L., Kashiwagi, J., Gaur, P. M., Upadhyaya, H. D., Vadez, V. 2010. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) mini core germplasm. Field Crops Res., 119: 322-330.
  • Kumar, T., Bharadwaj, C., Rizvi, A. H., Sarker, A., Tripathi, S., Alam, A., Chauhan, S. K. 2015. Chickpea landraces: A valuable and divergent source for drought tolerance. Int. J. Trop. Agric., 33: 633-638.
  • Kumlu, S. 2003. Animal Breeding. Turkish Cattle Breeders Central Association Publications. Publication No:1, Ankara.
  • Kushwah, A., Bindra, S., Singh, I., Dixit, G. P, Sharma, P., Srinivasan, S., Gaur, P.M., Singh, S. 2020. Advances in chickpea breeding and genomics for cultivar development and trait improvement in India. Accelerate. Plant Breed, 3: 31-66.
  • Mart, D. 2000. A study on the determination of genotype x environment interactions and adaptability in terms of some important characteristics of chickpea (Cicer arietinum L.) in Çukurova conditions. Çukurova University Graduate School of Natural and Applied Sciences, Department of Field Crops, PhD Thesis, Adana.
  • Mart, D., Cansaran, E., Karaköy, T. 2005. A research on the determination of genotype x environment interactions and adaptability in terms of some characteristics of chickpea (Cicer arietinum L.) in Çukurova conditions. Turkey 6th Field Crops Congress, 1027-1032.
  • Misra, R. C. 1991. Stability of heritability, genetic advance, and character association estimates in chickpea. International Chickpea Newsletter, 25: 10-11.
  • Moose, S. P., Mumm, R. H. 2008. Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol, 147 (3): 969-977.
  • Nakajima, K., Sena, G., Nawy, T., Benfey, P. N. 2001. Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 413: 307-311.
  • Örs, S., Ekinci, M. 2015. Drought stress and plant physiology. Derim, 32 (2): 237-250.
  • Percy, R. G., Cantrell, R. G., Zhang, J. 2006. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci., 46 (3): 1311-1317.
  • Plackett, A. R. G., Huang, L., Sanders, H. L., Langdale, J. A. 2014. High efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. Plant Physiol, 165 (1): 3-14.
  • Pundir, R. P. S., Rao, N. K., Van der Maesen, L. J. G. 1985. Distribution of qualitative traits in the world germ-plasm of chickpea. Euphytica, 34: 697-703.
  • Puritz, J. B., Matz, M. V., Toonen, R. J., Weber, J. N., Bolnick, D. I., Bird, C. E. 2014. Solving the mystery of the RAD ambition. Mol. Ekol., 23: 5937-5942.
  • Purushothaman, R., Krishnamurthy, L., Upadhyaya, H D, Vadez, V., Varshney, R. K. 2016. Chickpea (Cicer arietinum L.) shoot characteristics and its relationship with tolerance to recent drought. Field Crops Res., 197: 10-27.
  • Ram, S. G., Thiruvengadam, V., Vinod, K. K. 2007. Genetic diversity among cultivars, landraces and wild relatives of rice as revealed by microsatellite markers. J. Appl. Genet., 48 (4): 337-345.
  • Raven, J. A., Edwards, D. 2001. Roots: evolutionary origins and biogeochemical significance. Journal Exp. Bot., 52: 381-401.
  • Rogers, H. H., Prior, S. A., Runion, G. B., Mitchell, R. J. 1996. Root to shoot ratio of crops as influenced by CO2. Plant Soil, 187: 229-248.
  • Sabaghpour, S. H., Mahmoudi, A. A., Saeed, A., Iraj, K. 2018. Study of chickpea drought tolerance lines under dryland conditions of Iran. Indian J. Crop Sci., 1: 70-73.
  • Salsman, K. J., Jordan, D. N., Smith, S. D., Neuman, D. S. 1999. Effect of atmo-spheric enrichment on root growth and carbohydrate allocation of Phaseolus spp. Int. J. Plant Sci., 160: 1075-1081.
  • Saxena, N. P., Kapoor, S. N., Bisht, D. S. 1983. Emergence of chickpea seedlings in suboptimal seedbed moisture. International Chickpea Newsletter, 9: 12-14.
  • Sayılgan, Ç., Kocatürk, M. 2019. Evaluation of yield performance of some registered and landraces chickpea varieties in the Western Mediterranean Region. Derim, 36 (2): 207-216.
  • Sciarresi, C., Patrignani, A., Soltani, A., Sinclair, T., Lollato, R. P. 2019. Plant traits to increase winter wheat yield in semiarid and subhumid environments. Agron. J., 111: 1728-1740.
  • Scotland, R. W. 2010. Deep homology: a view from systematics. Bioessays, 32: 438-449. Seber, S. A. F., Wild, C. J. 1989. Non linear Regression. John Wiley&Sons, Inc. USA.
  • Shah, R. M., Pathak, A. R., Zaveri, P. P., Patel, J. A., Patel, P. K. 1983. Genotype x environment interaction and stability analysis for yield in chickpea. Inter. Chickpea Newsletter, 8: 9-10.
  • Singh, K. B., Bejiga, G., Malhotra, R. S. 1990. Associations of some characters with seed yield in chickpea collection. Euphytica, 49: 83-88.
  • Sivashakthi, S., Thudi, M., Tharanya, M., Kale, S. M, Kholova, J., Halime, M. H, Jaganathan, D., Baddam, R., Thirunalasundrai, T., Gaur, P. M., Varsney, R. K., Vadez, V. 2018. Plant viability QTLs are co-mapped with a previously reported QTL-hotspot for drought tolerance, while water-saving QTLs pair up in other regions of the chickpea genome. BMC Plant Biol., 18: 29.
  • Stephens, A., Lombardi, M., Cogan, N. O. I., Forster, J. W., Hobson, K., Materne, M., Kaur, S. 2014. Genetic marker discovery of ascochyta blight resistance in chickpeas (Cicer arietinum L.), intra-species link map construction and quantitative feature locus analysis. Mol. Breed., 33: 297-313.
  • Stupak, M., Vanderschuren, H., Gruissem, W., Zhang, P. 2006. Biotechnological approaches to cassava protein improvement. Trends Food Sci. Technol., 17 (12): 634-641.
  • Şehirali, S. 1988. Legumes. Ankara University Faculty of Agriculture Publications, Ankara.
  • Tabachnick, B. G., Fidel, L. S. 2014. Using Multivariate Statistics. (Sixth Edition). USA: Pearson Education Limited.
  • Teuling, A. J., Van Loon, A., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., Spank, U. 2013. Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40 (10): 2071-2075.
  • Thudi, M., Bohra, A., Nayak, S. N., Varghese, N., Shah, T. M., Penmetsa, R. V., Thirunavukkarasu, N., Gudipati, S., Gaur, P. M., Kulwal, P. L., Upadhyaya, H. D., Kavikishor, P. B., Winter, P., Kahl, G., Town, C. D., Kilian, A., Cook, D. R., Varshney, R. K. 2011. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS One, 6 (11): e27275.
  • Topalak C., Ceyhan, E. 2015. The effects of seed yield and some agricultural characters of different sowing dates on chickpea. Selçuk Tarım Bilimleri Dergisi, 2 (2): 130-139.
  • Van Dijk, M., Morley, T., Jongeneel, R., Van Ittersum, M., Reidsma, P., Ruben, R. 2017. Disentangling agronomic and economic yield gaps: an integrated framework and application. Agric. Syst., 154: 90-99.
  • Varshney. R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G., Cannon, S., Baek, J., Rosen, B. D., Tar'an, B., Millan, T., Zhang, X., Ramsay, L. D., Iwata, A., Wang, Y., Nelson, W., Farmer, A. D., Gaur, P. M., Soderlund, C., Penmetsa, R. V., Xu, C., Bharti, A. K., He, W., Winter, P., Zhao, S., Hane, J. K., Carrasquilla-Garcia, N., Condie, J. A., Upadhyaya, H. D., Luo, M. C., Thudi, M., Gowda, C. L., Singh, N. P., Lichtenzveig, J., Gali, K. K., Rubio, J., Nadarajan, N., Dolezel, J., Bansal, K. C., Xu, X., Edwards, D., Zhang, G., Kahl, G., Gil, J., Singh, K. B., Datta, S. K., Jackson, S. A., Wang, J., Cook, D. R. 2013. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol, 31 (3): 240-246.
  • Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J., Krishnamurthy, L., Jaganathan, D., Koppolu, J., Bohra, A., Tripathi, S., Rathore, A., Jukanti, A. K., Jayalakshmi, V., Vemula, A., Singh, S. J., Yasin, M., Shehshayee, M. S., Viswanatha, K. P. 2014. Genetic dissection of drought tolerance in chickpeas (Cicer arietinum L.). Theory. Application Genetic, 127: 445-462.
  • Wang, S., Basten, C. J., Zeng, Z. B. 2007. Windows QTL cartographer 2.5. Raleigh, NC: Department of Statisitcal, North Carolina State University.
  • Wood, H. J., Hunt, J. D. 1997. Modelling the growth of feather crystals. Acta Materialia, 45 (2):569-574. Yıldız, M., Kaya, F., Terzi, H. 2020. Drought Stress and Plant Proteomics. Gümüşhane University Journal of Science, 10 (1): 286-297.
There are 74 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Article
Authors

Ufuk Karadavut 0000-0001-5362-7585

Ömer Sözen 0000-0001-5528-7887

Project Number YOK
Publication Date April 25, 2023
Submission Date February 24, 2023
Published in Issue Year 2023

Cite

APA Karadavut, U., & Sözen, Ö. (2023). Kantitatif Karakter Lokus Analizi ile Nohutta (Cicer arietinum L.) Kuraklık Toleransı Üzerine Bir Çalışma. Turkish Journal of Agricultural and Natural Sciences, 10(2), 318-329. https://doi.org/10.30910/turkjans.1255993