Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Drought Stress Condition on Different Plant Growth Stages on Some Physiological Traits in Bread Wheat (Triticun aestivum L.) Genotypes

Yıl 2018, Cilt: 5 Sayı: 4, 375 - 385, 18.10.2018
https://doi.org/10.30910/turkjans.471122

Öz

Drought is the mainly abiotic
stress factor in wheat affecting yield and quality. In this research it was
investigated yield and some physiological traits under various drought stress
condition and the relationships between physiological characters in some bread
wheat genotypes. This research was carried out in 2008-2009 and 2009-2010 cycle
during 2 growing seasons with totally 15 bread wheat genotypes in split block
design with 3 replicated. Drought applications were main plot and genotypes
were sub-plot. In this research, yield and some physiological traits such as
canopy temperature and chlorophyll content were investigated at various three
plant growth stages. Also, days of heading and maturating, grain filling
period, glaucousity and among these traits were investigated. Combined analysis
of variance indicated significant differences among genotypes and treatments.
The lowest canopy temperature was measured from Kate A-1 and the highest
temperature from Golia. Canopy temperature negatively affected grain yield and
correlation coefficient between yield and canopy temperature was at booting (r=
-0.779), heading stage (r= -0.793) and grain filling stage (r=-0.924*) under
non-stress conditions. Highest canopy temperature was determined at heading and
grain filling stage under fully drought treatment. Drought stress negatively
affected and reduced leaf chlorophyll content at three development stages. The
highest leaf chlorophyll content was determined under non-stress treatment. The
highest chlorophyll content was measured in ÖVD2/27-07 at heading stage and in
EBVD24-07 at grain filling stage. Determined correlation coefficient between
grain yield and chlorophyll content were at booting r= 0.499, heading stage r=
0.498, and grain filling stage r=0.954*. The results of the study showed that
canopy temperature and chlorophyll content could be used as selection
physiological parameters for yield under various drought stress conditions.

Kaynakça

  • Evaluation of canopy temperature as a screening tool for heat tolerance in spring wheat. Journal of Agronomy and Crop Science 176: 119-129.
  • Anonim, 2014. Trakya Tarımsal Araştırma Enstitüsü, Proje Faaliyet Raporları, Edirne.
  • Araus, J.L. 1996. Integrati ve physiological criteria associated with yield potential. In: Reynolds, MP., Rajaram, S., Mc Nab, A. (Eds.). Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, D.F.
  • Ayeneh, A., Van Ginkel, M., Reynolds, M.P., Ammar, K. 2002. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79 (2-3), 173-184.
  • Babar, M.A., Reynolds, M.P., van Ginkel, M., Klatt, A.R., Raun, W.R., Stone M.L. 2006a. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll and canopy temperature in wheat. Crop Science 46, 1046-1057.
  • Babar, M.A., Reynolds, M.P., Van Ginkel, M., Klatt, A.R., Raun, W.R., Stone, M.L. 2006b. Spectral reflectance indices as potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 46: 578-588
  • Blum, A., Shpiler, L., Golan, G. and Mayer, J. 1989. Yield Stability and Canopy Temperature of Wheat Genotypes under Drought-Stress. Field Crop Research, 22: 289-296.
  • Blum, A. 2000. Mitigation of Drought Stress by Crop Management. Plant Stres.com, http://www.plantstress.com/articles/drought_m/. Clarke, J. M., McCaig, T.N. 1982. Excised-leaf water retention capability as an indicator of drought resistance of Triticum genotypes. Canadian Journal of Plant Science, 62(3): 571-578.
  • Dakheel, A., Makdis, F. 1991. The Role of Glaucousness as a Selection Criterion for Drought Tolerance in Durum Wheat. Cereal Improvement Program. Annual Report, 120-121. ICARDA, Aleppo.
  • Dencic, S., Kastori, R., Kobiljski, B., Duggan, B. 2000. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica, 113: 43-52.
  • Diaz, R. A., Mathias, A. D., and Hanks, R. J. 1983. Evapotranspiration and yield estimation of spring wheat from canopy temperature. Agronomy Journal, 75: 805-810.
  • Fischer, R.A. 2001. Selektion Traits for Improving Yield Potantial. Application of Physiology in Wheat Breeding. Chapter-13, pp. 148-159. International Maize and Wheat Improvement Center, CIMMYT. Mexico.
  • Fischer, R.A. 2007. Understanding the physiological basis of yield potential in wheat. Journal of Agricultural Science 145: 99-113. Fuchs, M. 1990. Infrared measurement of canopy temperature and detection of plant water stress. Theoretical and Applied Climatology 42(4): 253-261.
  • Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research. 2nd Ed. John Willey and Sons, Inc. New York. 641. Idso, S. B., Reginate, R. J., Hatfield, J. L., and Pinter, P. J. Jr. 1981. Measuring yield reducing plant water potential depression in wheat by infrared thermometry. Irrigation Science 2: 205-212.
  • Jefferson, P.G., Johnson, D.A., and Asay, K. H. 1989. Epicuticular wax production, water status and leaf temperature in Triticeae range grasses of contrasting visible glaucousness. Canadian Journal of Plant Science, 69(2): 513-519.
  • Kalaycı, M., Özbek, V., Çekiç, C., Ekiz, H., Keser, M., Altay, F. 1998. Orta Anadolu Koşullarında Kurağa Dayanıklı Buğday Genotiplerinin Belirlenmesi ve Morfolojik ve Fizyolojik Parametrelerin Geliştirilmesi. TÜBİTAK Araştırma Projesi Kesin Raporu. Anadolu Tarımsal Araştırma Enstitüsü, Eskişehir.
  • Kalaycı, M. 2005. Örneklerle Jump Kullanımı ve Tarımsal Araştırma için Varyans Analiz Modelleri, Anadolu Tarımsal Araştırma Enst, Müd, Yayınları, Yayın No: 21, Eskişehir.
  • Lopes, M.S. and Reynolds, M.P. 2010 Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology 37(2): 147-156.
  • Lopes, M.S. and Reynolds, M.P. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany (in review).
  • Loss, S.P. and Siddique, K.H.M. 1994. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv. Agron. 52: 229-276.
  • Merah, O., Deleens, E., Souyris, I., Monneveux, P. 2000. Effect of glaucousness on carbon isotope discrimination and grain yield in durum wheat. Journal of Agronomy and Crop Science, 185(4): 259-265.
  • Öztürk İ, Kahraman T, Avci R, Girgin V.Ç, Şili Ş, Kılıç T.H, Tülek A, Tuna B. 2018. Effect of the Rainfall and Humidity at Various Growth Stage on Yield and Quality in Bread Wheat (Triticum aestivum L.) Cultivars. Agriculture & Food. Journal of International Scientific Publications. Volume 6, p: 26-36. (ISSN 1314-8591)
  • Pask, A.J.D., J. Pietragalla, D.M. Mullan, M.P. Reynolds, (Eds.). 2012. Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico, D.F.: CIMMYT.
  • Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I., Fischer, R.A. 1994. Physiological and morphological traids associated with spring wheat yield under hot irrigated conditions. Australian Journal Plant Physiology, 21: 717-730.
  • Reynolds, M., Skovmand, B., Trethowan, R. 2000. Evaluating a conceptual model for drought tolerance. A Strategic Planning Workshop, 21-25 June 1999. CIMMYT, Mexico, pp.49-53.
  • Reynolds, M.P., Nagarajan, S., Razzaque, M.A., Ageeb, O.A.A. 2001. Heat Tolerance. Applicationof Physioloji in Wheat Breeding, Chapter 10, p.124-135. International Maize and Wheat Improvement Center, CIMMYT. Mexico.
  • Reynolds, M.P., Ortiz, R. 2010. Adapting crops to climate change: a summary. In: Reynolds MP (ed), Climate change and crop production. CAB international, pp. 1-8.
  • Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A (eds.). 2001. Application of Physiology in Wheat Breeding. Mexico, D.F.: CIMMYT.
  • Richards, R.A., Rawson, H.M., Johnson, D. A. 1986. Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Functional Plant Biology, 13(4): 465-473.
  • Shimazaki, Y., Ookawa, T., Hirazawa, T. 2005. The root tip and accelerating region supress elongation of the decelerating region without any effects on cell turgor in primary roots of maize under water stress. Plant Physiol. 139: 458-465.
  • Zadoks, J.C., Chang, T.T., Konzak, C.F. 1974. A decimal code for growth stages of cereals. Weed Res. 14: 415-421.

Ekmeklik Buğday (Triticum aestivum L.) Genotiplerinde Farklı Gelişme Dönemlerinde Oluşan Kuraklığın Bazı Fizyolojik Karakterlere Etkisi

Yıl 2018, Cilt: 5 Sayı: 4, 375 - 385, 18.10.2018
https://doi.org/10.30910/turkjans.471122

Öz

Ekmeklik
buğdayda kuraklık verim ve kaliteyi doğrudan etkileyen önemli bir abiyotik
stres faktörüdür.  Araştırmada bazı
ekmeklik buğday genotiplerinin farklı kuraklık seviyelerinde verim ve bazı
fizyolojik karakterler arasındaki ilişkiler incelenmiştir. Bölünmüş parseller
deneme desenine göre 2008-2009 ve 2009-2010 yıllarında yürütülen ve 15
genotipin materyal olarak kullanıldığı deneme 3 tekrarlamalı olarak
kurulmuştur. Denemede ana parsellerde kuraklık uygulamaları, alt parsellerde
genotipler yer almıştır. Araştırmada; tane verimi ile üç farklı gelişme
döneminde bitki örtüsü sıcaklığı ve bayrak yaprakta klorofil miktarı
ölçülmüştür. Ayrıca başaklanma ve olgunlaşma gün sayıları, tane dolum süresi ve
mumsuluk oranları ile bu karakterler arasındaki ilişkiler incelenmiştir.
Araştırmada genotipler ve uygulamalar arasında önemli farklılıklar tespit
edilmiştir. En düşük bitki örtüsü sıcaklığı Kate A-1 de görülürken en yüksek
sıcaklık Golia çeşidinde ölçülmüştür. En düşük sıcaklık değerleri gebeleşme
(17.21 oC ), başaklanma (19.96 oC ) ve tane dolum
dönemlerinde (20.11 oC ) kuraklık uygulanmayan parsellerde
ölçülmüştür. En yüksek sıcaklıklar ise başaklanma ve tane dolum dönemlerinde
tam kuraklık uygulamalarında belirlenmiştir. Kanopi sıcaklığının tane verimini
olumsuz yönde etkilemiş olup kanopi sıcaklığı ile tane verimi arasında
korelasyon katsayıları başaklanma öncesi r= -0.779, başaklanma dönemi r= -0.793
ve tane dolum dönemi r= -0.924* olarak belirlenmiştir. Kuraklık stresi klorofil
miktarını üç bitki gelişme döneminde de düşürmüş olup en yüksek klorofil miktarı
kuraklık stresi uygulanmayan parselde belirlenmiştir. Genotiplerde başaklanma
döneminde en yüksek klorofil miktarı ÖVD2/27-07 ve tane dolum döneminde
EBVD24-07 hatlarında ölçülmüştür. Tane verimi ile bayrak yaprak klorofil
içeriği arasında ilişki başaklanma öncesi r= 0.499, başaklanma dönemi r= 0.498
ve tane dolum dönemi r=0.954* olarak belirlenmiştir. Araştırma sonucu kanopi
sıcaklığı ve klorofil kapsamının farklı kuraklık stresi altında verim için
seleksiyon kriteri olarak kullanılabileceğini göstermiştir.

Kaynakça

  • Evaluation of canopy temperature as a screening tool for heat tolerance in spring wheat. Journal of Agronomy and Crop Science 176: 119-129.
  • Anonim, 2014. Trakya Tarımsal Araştırma Enstitüsü, Proje Faaliyet Raporları, Edirne.
  • Araus, J.L. 1996. Integrati ve physiological criteria associated with yield potential. In: Reynolds, MP., Rajaram, S., Mc Nab, A. (Eds.). Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, D.F.
  • Ayeneh, A., Van Ginkel, M., Reynolds, M.P., Ammar, K. 2002. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research 79 (2-3), 173-184.
  • Babar, M.A., Reynolds, M.P., van Ginkel, M., Klatt, A.R., Raun, W.R., Stone M.L. 2006a. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll and canopy temperature in wheat. Crop Science 46, 1046-1057.
  • Babar, M.A., Reynolds, M.P., Van Ginkel, M., Klatt, A.R., Raun, W.R., Stone, M.L. 2006b. Spectral reflectance indices as potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 46: 578-588
  • Blum, A., Shpiler, L., Golan, G. and Mayer, J. 1989. Yield Stability and Canopy Temperature of Wheat Genotypes under Drought-Stress. Field Crop Research, 22: 289-296.
  • Blum, A. 2000. Mitigation of Drought Stress by Crop Management. Plant Stres.com, http://www.plantstress.com/articles/drought_m/. Clarke, J. M., McCaig, T.N. 1982. Excised-leaf water retention capability as an indicator of drought resistance of Triticum genotypes. Canadian Journal of Plant Science, 62(3): 571-578.
  • Dakheel, A., Makdis, F. 1991. The Role of Glaucousness as a Selection Criterion for Drought Tolerance in Durum Wheat. Cereal Improvement Program. Annual Report, 120-121. ICARDA, Aleppo.
  • Dencic, S., Kastori, R., Kobiljski, B., Duggan, B. 2000. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica, 113: 43-52.
  • Diaz, R. A., Mathias, A. D., and Hanks, R. J. 1983. Evapotranspiration and yield estimation of spring wheat from canopy temperature. Agronomy Journal, 75: 805-810.
  • Fischer, R.A. 2001. Selektion Traits for Improving Yield Potantial. Application of Physiology in Wheat Breeding. Chapter-13, pp. 148-159. International Maize and Wheat Improvement Center, CIMMYT. Mexico.
  • Fischer, R.A. 2007. Understanding the physiological basis of yield potential in wheat. Journal of Agricultural Science 145: 99-113. Fuchs, M. 1990. Infrared measurement of canopy temperature and detection of plant water stress. Theoretical and Applied Climatology 42(4): 253-261.
  • Gomez, K.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research. 2nd Ed. John Willey and Sons, Inc. New York. 641. Idso, S. B., Reginate, R. J., Hatfield, J. L., and Pinter, P. J. Jr. 1981. Measuring yield reducing plant water potential depression in wheat by infrared thermometry. Irrigation Science 2: 205-212.
  • Jefferson, P.G., Johnson, D.A., and Asay, K. H. 1989. Epicuticular wax production, water status and leaf temperature in Triticeae range grasses of contrasting visible glaucousness. Canadian Journal of Plant Science, 69(2): 513-519.
  • Kalaycı, M., Özbek, V., Çekiç, C., Ekiz, H., Keser, M., Altay, F. 1998. Orta Anadolu Koşullarında Kurağa Dayanıklı Buğday Genotiplerinin Belirlenmesi ve Morfolojik ve Fizyolojik Parametrelerin Geliştirilmesi. TÜBİTAK Araştırma Projesi Kesin Raporu. Anadolu Tarımsal Araştırma Enstitüsü, Eskişehir.
  • Kalaycı, M. 2005. Örneklerle Jump Kullanımı ve Tarımsal Araştırma için Varyans Analiz Modelleri, Anadolu Tarımsal Araştırma Enst, Müd, Yayınları, Yayın No: 21, Eskişehir.
  • Lopes, M.S. and Reynolds, M.P. 2010 Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology 37(2): 147-156.
  • Lopes, M.S. and Reynolds, M.P. 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. Journal of Experimental Botany (in review).
  • Loss, S.P. and Siddique, K.H.M. 1994. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv. Agron. 52: 229-276.
  • Merah, O., Deleens, E., Souyris, I., Monneveux, P. 2000. Effect of glaucousness on carbon isotope discrimination and grain yield in durum wheat. Journal of Agronomy and Crop Science, 185(4): 259-265.
  • Öztürk İ, Kahraman T, Avci R, Girgin V.Ç, Şili Ş, Kılıç T.H, Tülek A, Tuna B. 2018. Effect of the Rainfall and Humidity at Various Growth Stage on Yield and Quality in Bread Wheat (Triticum aestivum L.) Cultivars. Agriculture & Food. Journal of International Scientific Publications. Volume 6, p: 26-36. (ISSN 1314-8591)
  • Pask, A.J.D., J. Pietragalla, D.M. Mullan, M.P. Reynolds, (Eds.). 2012. Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico, D.F.: CIMMYT.
  • Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I., Fischer, R.A. 1994. Physiological and morphological traids associated with spring wheat yield under hot irrigated conditions. Australian Journal Plant Physiology, 21: 717-730.
  • Reynolds, M., Skovmand, B., Trethowan, R. 2000. Evaluating a conceptual model for drought tolerance. A Strategic Planning Workshop, 21-25 June 1999. CIMMYT, Mexico, pp.49-53.
  • Reynolds, M.P., Nagarajan, S., Razzaque, M.A., Ageeb, O.A.A. 2001. Heat Tolerance. Applicationof Physioloji in Wheat Breeding, Chapter 10, p.124-135. International Maize and Wheat Improvement Center, CIMMYT. Mexico.
  • Reynolds, M.P., Ortiz, R. 2010. Adapting crops to climate change: a summary. In: Reynolds MP (ed), Climate change and crop production. CAB international, pp. 1-8.
  • Reynolds, M.P., Ortiz-Monasterio, J.I., McNab, A (eds.). 2001. Application of Physiology in Wheat Breeding. Mexico, D.F.: CIMMYT.
  • Richards, R.A., Rawson, H.M., Johnson, D. A. 1986. Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Functional Plant Biology, 13(4): 465-473.
  • Shimazaki, Y., Ookawa, T., Hirazawa, T. 2005. The root tip and accelerating region supress elongation of the decelerating region without any effects on cell turgor in primary roots of maize under water stress. Plant Physiol. 139: 458-465.
  • Zadoks, J.C., Chang, T.T., Konzak, C.F. 1974. A decimal code for growth stages of cereals. Weed Res. 14: 415-421.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

İrfan Öztürk Bu kişi benim

Kayıhan Z. Korkut Bu kişi benim

Yayımlanma Tarihi 18 Ekim 2018
Gönderilme Tarihi 8 Aralık 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 4

Kaynak Göster

APA Öztürk, İ., & Korkut, K. Z. (2018). Ekmeklik Buğday (Triticum aestivum L.) Genotiplerinde Farklı Gelişme Dönemlerinde Oluşan Kuraklığın Bazı Fizyolojik Karakterlere Etkisi. Türk Tarım Ve Doğa Bilimleri Dergisi, 5(4), 375-385. https://doi.org/10.30910/turkjans.471122