Araştırma Makalesi
BibTex RIS Kaynak Göster

Fan-Ped Serinletme Sisteminin Duyulur ve Gizli Isı Transferine Etkisi ve Sistem Etkinliğinin Belirlenmesi

Yıl 2019, Cilt: 6 Sayı: 1, 64 - 70, 21.01.2019
https://doi.org/10.30910/turkjans.515349

Öz

Bu
çalışmada, seralarda yüksek sıcaklık değerlerinin bitki yetiştiriciliğine
olanak tanımadığı dönemlerde kullanılan fan-ped serinletme sisteminin, duyulur
ve gizli ısı transferine etkisi ve sistem etkinliğinin belirlenmesi
amaçlanmıştır. Sera içerisinde ve dışında 08:00-16:00 saatleri arasında yapılan
ölçümler sonucunda, duyulur ısı transferi, 123.65 ve 809.31 W m-2
arasında değişmiş ve ortalama değeri 394.26 W m-2 olarak
hesaplanmıştır. Serada duyulur ısı transferi, dış ortam ve sera ortamı
arasındaki sıcaklık farkı artışına bağlı olarak artmıştır. Gizli ısı transferi,
-103.86 ve -1430.81 W m-2 değerleri arasında değişmiş ve ortalama
değeri -696.41 W m-2 olarak hesaplanmıştır. Serada Bowen oranı,
-0.35 ve -1.19 arasında değişmiş ve ortalama Bowen oranı değeri -0.67 olarak
hesaplanmıştır. Sistem etkinliğinin en büyük değeri %73 olarak gerçekleşmiş ve
dış-iç sıcaklık farkının en yüksek değeri 12.85 °C olarak bulunmuştur. Çalışma
sonucunda, sıcaklıkların yükseldiği dönemlerde serada kullanılan fan-ped
serinletme sisteminin buharlaştırma etkisi nedeniyle sera içerisinde gizli ısı
transferinin, duyulur ısı transferinden daha fazla olduğu ve bitki
yetiştiriciliği için uygun iç ortam sıcaklık değerleri oluşturduğu
belirlenmiştir.



 

Kaynakça

  • Al-Amri, A.M.S. 2000. Comparative use of greenhouse cover materials and their effectiveness in evaporative cooling systems under conditions in eastern province of Saudi Arabia. Agricultural Mechanization in Asia, Africa & Latin America, 31(2): 61-66.
  • Al-Helal, I. M. 2001. A survey Study of Cooling Pads Clogging Problem for Greenhouses and Poultry Buildings in Central Region of Saudi Arabia. Research Bulletin. Research Bulletin No. 105. Agricultural research center, College of Agriculture, King Saud University. Riyadh, Saudi Arabia.
  • Arbel, A., Yekutieli, O., Barak, M. 1999. Performance of a fog system for cooling greenhouses. Journal of Agricultural Engineering Research, (72): 129-136.
  • ASAE, 1994. Plants: Greenhouses, Growth Chambers and other Facilities. ASAE Fundamentals Handbook (SI).
  • Baytorun, A.N., Tokgöz, H., Üstün, S., Akyüz, A. 1994. Seralarda iklimlendirme olanakları. Adana, Türkiye. 3. Soğutma ve İklimlendirme Kongresi, Mayıs 1994, Çukurova Üniversitesi, s. 303-313.
  • Bottcher, R.W., Baughman, G.R., Kesler, D.J. 1989. Evaporative cooling using a pneumatic misting system. Trans. ASAE. (32): 671-676.
  • Cohen, Y., Stanhill, G., Fuchs, M. 1983. An experimental comparison of evaporative cooling in a naturally ventilated glasshouse due to wetting the outer roof and inner crop soil surfaces. Agricultural Meteorology, 28(3): 239-251.
  • Davies, P.A. 2005. A Solar Cooling system for greenhouse food production in hot climates. Solar Energy, (79): 661-668.
  • Fuchs, M., Dayan, E., Presnov, E. 2006. Evaporative cooling of a ventilated greenhouse rose crop. Agricultural and Forest Meteorology, (138): 203-215.
  • Helmy, M. A., Eltawil, M.A., Abo-shieshaa, R.R., El-Zan, N.M. 2013. Enhancing the evaporative cooling performance of fan-pad system using alternative pad materials and water film over the greenhouse roof. Agric Eng Int: CIGR Journal, 15(2): 173-187.
  • Kittas, C., Katsoulas, N., Baille, A. 2001. Influence of greenhouse ventilation regime on the microclimate and energy portioning of a rose canopy during summer conditions. Journal of Agricultural Engineering Research, 79(3): 349-360.
  • Kittas, C., Bartzanas, T., Jaffrin, A. 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering, 85(1): 87-94.
  • Mutwiwa, N.U., Max, J.J.F., Tantau, H.J. 2007. Effect of greenhouse cooling method on the growth and yield of tomato in the tropics. Conference on International Agricultural Research for Development, October 9-11, Göttingen, p. 1-4.
  • Öztürk, H.H. 2004. Venlo tip cam serada fan-ped serinletme sisteminin etkinliği ile duyulur ve gizli ısı transferi. Tarım Bilimleri Dergisi, 10(4): 381-388.
  • Öztürk, H.H. 2006. Effect of a fogging system on sensible and latent heat transfer in a plastic greenhouse. Agricultural Mechanization Asia, Africa and Latin America (AMA), 37(3): 52-61.
  • Willits, D.H. 2000. Constraints and limitations in greenhouse cooling: challenges for the next decade. Acta Hortic., 534: 57-66.

Effect of Fan-Pad Cooling System on Sensible and Latent Heat Transfer and Determination of System Efficiency

Yıl 2019, Cilt: 6 Sayı: 1, 64 - 70, 21.01.2019
https://doi.org/10.30910/turkjans.515349

Öz

In this study, it was aimed to
determine the effect of fan-pad cooling system on sensible and latent heat
transfer and system efficiency when high temperature values in greenhouses do
not enable plant cultivation.
As a result of
measurements carried out between 08:00 and 16:00 inside and outside the
greenhouse,
sensible heat transfer ranged
between 123.65 and 809.31 W m-2 and its mean value was calculated as
394.26 W m-2. In the greenhouse, the sensible heat transfer was
increased based on the temperature difference between the external environment
and the greenhouse environment. The latent heat transfer ranged between the
values of -103.86 and -1430.81 W m-2 and its mean value was
calculated as -696.41 W m-2. The Bowen rate in greenhouse ranged
between -0.35 and -1.19 the average Bowen rate was calculated as -0.67. The
maximum value of the system efficiency was found 73% and the highest value of
the external temperature difference was found 12.85 °C. As a result of the
study, it was determined that the latent heat transfer was higher than the
sensible heat transfer in the greenhouse due to the evaporative effect of the
fan-pad cooling system used in the greenhouse during the periods when the
temperatures rise and it creates the indoor temperature values suitable for the
plant cultivation.

Kaynakça

  • Al-Amri, A.M.S. 2000. Comparative use of greenhouse cover materials and their effectiveness in evaporative cooling systems under conditions in eastern province of Saudi Arabia. Agricultural Mechanization in Asia, Africa & Latin America, 31(2): 61-66.
  • Al-Helal, I. M. 2001. A survey Study of Cooling Pads Clogging Problem for Greenhouses and Poultry Buildings in Central Region of Saudi Arabia. Research Bulletin. Research Bulletin No. 105. Agricultural research center, College of Agriculture, King Saud University. Riyadh, Saudi Arabia.
  • Arbel, A., Yekutieli, O., Barak, M. 1999. Performance of a fog system for cooling greenhouses. Journal of Agricultural Engineering Research, (72): 129-136.
  • ASAE, 1994. Plants: Greenhouses, Growth Chambers and other Facilities. ASAE Fundamentals Handbook (SI).
  • Baytorun, A.N., Tokgöz, H., Üstün, S., Akyüz, A. 1994. Seralarda iklimlendirme olanakları. Adana, Türkiye. 3. Soğutma ve İklimlendirme Kongresi, Mayıs 1994, Çukurova Üniversitesi, s. 303-313.
  • Bottcher, R.W., Baughman, G.R., Kesler, D.J. 1989. Evaporative cooling using a pneumatic misting system. Trans. ASAE. (32): 671-676.
  • Cohen, Y., Stanhill, G., Fuchs, M. 1983. An experimental comparison of evaporative cooling in a naturally ventilated glasshouse due to wetting the outer roof and inner crop soil surfaces. Agricultural Meteorology, 28(3): 239-251.
  • Davies, P.A. 2005. A Solar Cooling system for greenhouse food production in hot climates. Solar Energy, (79): 661-668.
  • Fuchs, M., Dayan, E., Presnov, E. 2006. Evaporative cooling of a ventilated greenhouse rose crop. Agricultural and Forest Meteorology, (138): 203-215.
  • Helmy, M. A., Eltawil, M.A., Abo-shieshaa, R.R., El-Zan, N.M. 2013. Enhancing the evaporative cooling performance of fan-pad system using alternative pad materials and water film over the greenhouse roof. Agric Eng Int: CIGR Journal, 15(2): 173-187.
  • Kittas, C., Katsoulas, N., Baille, A. 2001. Influence of greenhouse ventilation regime on the microclimate and energy portioning of a rose canopy during summer conditions. Journal of Agricultural Engineering Research, 79(3): 349-360.
  • Kittas, C., Bartzanas, T., Jaffrin, A. 2003. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosystems Engineering, 85(1): 87-94.
  • Mutwiwa, N.U., Max, J.J.F., Tantau, H.J. 2007. Effect of greenhouse cooling method on the growth and yield of tomato in the tropics. Conference on International Agricultural Research for Development, October 9-11, Göttingen, p. 1-4.
  • Öztürk, H.H. 2004. Venlo tip cam serada fan-ped serinletme sisteminin etkinliği ile duyulur ve gizli ısı transferi. Tarım Bilimleri Dergisi, 10(4): 381-388.
  • Öztürk, H.H. 2006. Effect of a fogging system on sensible and latent heat transfer in a plastic greenhouse. Agricultural Mechanization Asia, Africa and Latin America (AMA), 37(3): 52-61.
  • Willits, D.H. 2000. Constraints and limitations in greenhouse cooling: challenges for the next decade. Acta Hortic., 534: 57-66.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Sedat Boyacı

Yayımlanma Tarihi 21 Ocak 2019
Gönderilme Tarihi 19 Eylül 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 1

Kaynak Göster

APA Boyacı, S. (2019). Fan-Ped Serinletme Sisteminin Duyulur ve Gizli Isı Transferine Etkisi ve Sistem Etkinliğinin Belirlenmesi. Türk Tarım Ve Doğa Bilimleri Dergisi, 6(1), 64-70. https://doi.org/10.30910/turkjans.515349