Araştırma Makalesi
BibTex RIS Kaynak Göster

Kadmiyum (Cd) ve NaCl Uygulamalarının Brokolide (Brassica oleracea var. italica) Kuru Madde Miktarı ve Besin Elementi İçeriğine Etkisi

Yıl 2021, Cilt: 8 Sayı: 1, 77 - 84, 23.01.2021
https://doi.org/10.30910/turkjans.712033

Öz

Gelişmekte olan ülkelerde, daha ekonomik olması nedeniyle gelişmiş ülkelere göre sebze tüketimi hızla artmaktadır. Sebzelerde kadmiyum (Cd) birikimi, küresel olarak insan sağlığını tehdit eden önemli bir çevresel konudur. Sebzelerin Cd stresine tepkisini anlamak ve yönetim stratejilerini uygulamak, sebzelerin Cd alımını azaltmaya yardımcı olabilir. Bitkilerin Cd alımını etkileyen faktörler arasında tuzluluk yer almaktadır. Tuzluluk, dünyadaki en büyük abiyotik streslerden biridir. Tuzlu toprakta Cd bulunması sorunu daha da kötüleştirir. Bu amaçla yürütülen çalışmada brokoli bitkisine 3 farklı Cd dozu (0.1, 0.5 ve 2.5 mg Cd kg-1 ) ve 4 farklı tuz dozu (0, 200, 600, ve 1800 mg NaCl kg-1) uygulanmıştır. Denemede bitkinin yeşil aksam kuru madde verimi ve yeşil aksam Cd alımları incelenmiştir. Elde edilen sonuçlara göre Cd 0.1 mg kg-1 olduğu dozda kuru madde verimi tuz uygulamasının kontrolünde 3.59 g bitki-1 iken artan tuz uygulamalarına bağlı olarak sırasıyla 3.43, 2.83 ve 2.36 g bitki-1 olarak azaldığı belirlenmiştir. Tuzsuz ve Cd 2.5 uygulamasında kuru madde verimi 3.0 g bitki-1 iken tuzun en yüksek dozunda yaklaşık 2 kat azalarak 1.64 g bitki-1 düzeyine gerilemiştir. Düşük miktarda Cd ile kontamine olmuş toprak tuzluluk ile bir arada olduğunda Cd alımının arttırdığı saptanmıştır. Bitkilerin yeşil aksamındaki K konsantrasyonları bütün tuz uygulamaları altında azalma eğilimi gösterirken, 2.5 mg Cd kg-1 ve 1800 mg NaCl kg-1 uygulamasında K konsantrasyonu 4.19’dan 3.06’a mg kg-1 düzeyine düştüğü belirlenmiştir. Sonuçta, tuzlu topraklarda brokolide Cd alımının yüksek miktarda birikebileceği ortaya konulmuş olup brokolide daha az Cd biriktiren çeşitlerin belirlenmesine ihtiyaç olduğu saptanmıştır.

Kaynakça

  • Referans1 Abu-Muriefah, S.S. 2008. Growth parameters and elemental status of cucumber (Cucumus sativus) seedlings in response to cadmium accumulation. International Journal of Agriculture and Biology, 10:261–266.
  • Referans2 Alexander, P.D., Alloway, B.J. ve Dourado, A.M. 2006. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut, 144:736–745.
  • Referans3 Ali, H., Khan, E. ve Sajad, M.A., 2013. Phytoremediation of heavy metals – concepts and applications. Chemosphere, 91:869–881.
  • Referans4 Alloway, B. J. Heavy metals in soils, Chapman&Hall, London, UK, 1995.
  • Referans5 Avila, P.F., Ferreira, D.S.E. ve Candeias, C., 2017. Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ. Geochem. Hlth, 39:565–589.
  • Referans6 Bakhshayesh, E.B., Delkash, M., ve Scholz, M. 2014. Response of vegetables to cadmium-enriched soil. Water, 6(5):1246-1256.
  • Referans7 Baszynski, T. 1986. Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants. Acta Soc. Bot. Pol, 55:291- 304
  • Referans8 Bergman, W., 1992. Nutritional Disorders of Plants-Development, Visual and Analytical Diagnosis. Fischer Verlag. Jena.
  • Referans9 Bouyoucous, G. J. 1952. Hydrometer method improved for making particle size at analysis of soil. Argon. J, 54(5):464-465.
  • Referans10 Cheng, M., Kopittke, P.M., Wang, A. ve Tang, C., 2018. Salinity decreases Cd translocationby altering Cd speciation in the halophytic Cd-accumulator Carpobrotus rossii. Ann. Bot. 123:121–132.
  • Referans11 Çağlar, K.Ö. 1949. Toprak bilgisi. Ankara Üniveristesi Ziraat Fakültesi Yayınları, Ankara.
  • Referans12 Essa, T.A. 2002. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188(2):86-93.
  • Referans13 Fan, Y., Li, H., Xue, Z., Zhang, Q. ve Cheng, F., 2017. Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecol. Eng, 102:367–373.
  • Referans14 FAO, 2004. Food and agriculture organization of the United Nations. http://faostat.fao.org.
  • Referans15 FAO, 2014. Food and agriculture organization of the United Nations. http://faostat.fao.org.
  • Referans16 Fernández‐García, N., Martínez, V., & Carvajal, M. (2004). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167(5):616-622.
  • Referans17 Ghallab, A. ve Usman, A.R.A., 2007. Effect of sodium chloride-induced salinity on phytoavailability and speciation of Cd in soil solution. Water Air Soil Pollut, 185:43-51.
  • Referans18 Gharaibeh, M.A., Marschner, B. ve Heinze, S. 2015. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions. Environ. Sci. Pollut. Res, 22:18894-18905.
  • Referans19 Hadi, F., Ali, N. ve Ahmad, A. 2014. Enhanced phytoremediation of cadmium-contaminated soil by parthenium hysterophorus plant: effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Bioremediation Journal, 18(1): 46–55.
  • Referans20 Jackson, M.L. 1959. Soil chemical analysis. Englewood Cliffs, New Jersey.
  • Referans21 Ji, Y., Wu, P., Zhang, J., Zhang, J., Zhou, Y., Peng, Y., Zhang, S., Cai, G. ve Gao, G. 2018. Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: a case study along the Le'an river. Chemosphere, 199:361–371.
  • Referans22 Jinadasa, K.B.P.N., Milham, P.J., Hawkins, C.A., Cornish, P.S., Williams, P.A., Kaldor, J. ve Conroy, J.P. 1997. Survey of Cd levels in vegetables and soils of Greater Sidney. Australia. J. Environ. Qual, 26: 924-933.
  • Referans23 Karaoğlu, M. ve Yalçın, A.M. 2018. Toprak tuzluluğu ve Iğdır Ovası örneği. Journal of Agriculture, 1(1):27-41.
  • Referans24 Kumar, V., Chopra, A.K. ve Srivastava, S., 2016. Assessment of heavy metals in spinach spinacia oleracea L.) grown in sewage sludgeeamended soil. Commun. Soil Sci. Plant Anal, 47:221-236.
  • Referans25 Lindsay, W.L. ve Norvell, W.L. 1978. Development of a DTPA soil test for zinc, iron, manganese, copper. Soil. Sci. Soc. Am, 42:421-428.
  • Referans26 Lutts, S. ve Lefevre, I., 2015. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann. Bot, 115:509–528.
  • Referans27 Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R. ve Zhang, Z., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf, 126:111–121.
  • Referans28 Mataka, L.M., Henry, E.M.T., Masamba, W.R.L. ve Sajidu, S.M. 2006. Lead remediation of contaminated water using Moringa stenopetala sp., and Moringa oleifera sp., seed powder. Inter. J. Envir. Sci. & Tech, 3(2):131-139.
  • Referans29 McBride, M.B. 2003. Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks. Advances in Environmental Research. 8(1):5-19.
  • Referans30 Mombo, S., Foucault, Y., Deola, F., Gaillard, I., Goix, S., Shahid, M., Schreck, E., Pierart, A. ve Dumat, C., 2016. Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J. Soils Sediments, 16:1069-1077.
  • Referans31 Moya, J.L., R. Ros ve I. Picazo. 1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosyn. Res, 36(2):75-80.
  • Referans32 Mühling, K.H. ve Lauchli, A. 2003. Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Plant Soil, 253(1): 219-231.
  • Referans33 Norvell, W.A., Wu, J., Hopkins, D.G, Welch, R.M. 2000. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci Soc Am J, 64:2162–8.
  • Referans34 Padmaja, K., Prasad, D.D.K. ve Prasad, A.R.K. 1990. Inhibition of chlorophyll synthesis in phaseolus vulgaris seedlings by cadmium acetate. Photosynth, 24(3):399-405.
  • Referans35 Pandolfi, C., Mancuso, S. Ve Shabala, S., 2012. Physiology of acclimation to salinity stress in pea (Pisum sativum). Environ. Exp. Bot, 84:44-51.
  • Referans36 Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G. ve Shabala, S., 2014. Halophyte agriculture: success stories. Environ. Exp. Bot, 107:71-83.
  • Referans37 Pratt, P.F. 1965. Potassium. editor C. A. black, methods of soil analysis part II. American Socienty of Agronomy Inc., Publisher Madion, Winconsin, USA, pp. 1022.
  • Referans38 Qureshi, M.I., D'Amici, G.M., Fagioni, M., Rinalducci, S. ve Zolla, L., 2010. Iron stabilizes thylakoid proteinepigment complexes in Indian mustard during Cdphytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. J. Plant Physiol, 167: 761-770.
  • Referans39 Rehman, M.Z.U., Khalid, H., Akmal, F., Ali, S., Rizwan, M., Qayyum, M.F., Iqbal, M., Khalid, M.U. ve Azhar, M., 2017. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environ. Pollut, 227:560–568.
  • Referans40 Rizwan, M., Meunier, J.D., Miche, H. ve Keller, C. 2012. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J. Hazard Mater, 209–210:326–334.
  • Referans41 Sairam, R.K. ve Tyagi, A. 2004. Physiology and molecular biology of salinity stress tolerance in plants, Current Science. 407-421.
  • Referans42 Schlichting, E. ve Blume, H.P. 1966. Bodenkundliches praktikum. verlag paul parey. Hamburg- Berlin.
  • Referans43 Schmidt, U. 2003. Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant accumulation and leaching of heavy metals. Journal of Environmental Quality, 32:1939-1954.
  • Referans44 Shafi, M., Zhang, G.P., Bakht, J., Khan, M.A. Islam, E., Dawood, M.K. ve Raziuddin, Y. 2010. Effect of cadmium and salinity stresses on root morphology of wheat. Pak. J. Bot, 42(4): 2747-2754.
  • Referans45 Shafi, M., Bakht, J., Raziuddin, Y.. Hayat ve Zhang, G. 2011. Genotypic differences in the inhibition of photosynthesis and chlorophyll fluorescence by salinity and cadmium stresses on stresses in wheat. J. Plant. Nutri, 34: 315-23.
  • Referans46 Sirguey, C. ve Ouvrard, S. 2013. Contaminated soils salinity, a threat for phytoextraction. Chemosphere, 91(3):269-274.
  • Referans47 Smolders, E. ve McLaughlin, M.J., 1996. Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant Soil, 179:57–64.
  • Referans48 Smolders, E., Mertens, J., 2013. Cadmium. heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Springer, Netherlands (Chapter 10).
  • Referans49 Smykalova, I. ve Zamecnikova, B. 2003. The relationship between salinity and cadmiu stress in barley. Biologia plantarum, 46(2):269-273.
  • Referans50 Tang, L., Luo, W.J., He, Z.L., Gurajala, H.K., Hamid, Y., Khan, K.Y. ve Yang, X.E. 2018. Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption. J. Zhejiang Univ. - Sci. B, 19:147–158.
  • Referans51 U. S. Salinity Laboratory Staff 1954. Diagnosis and improvement of saline and alkaline soils (Ed L. A. Richards). USDA Agriculture Handbook B, No: 60, U. S. Gov. Printing Office, Washington, 160P.
  • Referans52 Wang, W., Vinocur, B., Shoseyov, O. ve Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 9:244-252.
  • Referans53 Watanabe, F.S. ve Olsen, S.R. 1995. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils. Soil Sci. Soc. Am. Proc, 29:677-678.
  • Referans54 Wei, Y., Zheng, X., Shohag, M.J.I. ve Gu, M. 2017. Bioaccessibility and human exposure assessment of cadmium and arsenic in pakchoi genotypes grown in Co-contaminated soils. Int. J. Environ. Res. Public Health, 14, 977.
  • Referans55 Weigel, H.J. ve Jager, H.J. 1980. Subcellular distribution and chemical forms of cadmium in bean plants. Plant Physiol, 65: 480-482.
  • Referans56 WHO, 2004. World health organization. http://who.org.
  • Referans57 WHO, 2014. World health organization. http:// who.org.
  • Referans58 Zheng, G., Lv, H.P., Gao, S. ve Wang, S.R. 2010. Effects of cadmium on growth and antioxidant responses in Glycyrrhiz auralensis seedlings. Plant, Soil and Environment, 56:508-515.
  • Referans59 Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6:441-445.
Yıl 2021, Cilt: 8 Sayı: 1, 77 - 84, 23.01.2021
https://doi.org/10.30910/turkjans.712033

Öz

Vegetable consumption, as it is more economic, has rapidly increased in developing countries as compared to the developed countries. Cadmium (Cd) accumulation in vegetables is an important environmental problem globally threatening human health. Understanding the response of vegetables to Cd stress and applying management strategies may be helpful to decrease Cd uptake of vegetables. Among the factors, affecting Cd uptake of plants is salinity. Salinity is one of the biggest abiotic stresses in the world. Cadmium occurrence in saline soils makes the problem even worse. In this study, for this reason, three Cd (0.1, 0.5 and 2.5 mg Cd kg-1) and four salt (0, 200, 600 and 1800 mg NaCl kg-1) doses were applied to broccoli plant. Dry matter yield and Cd uptake of green parts were investigated in the study. According to the obtained results, in the dose of 0.1 mg Cd kg-1, dry matter yield in the salt-control plants was 3.59 g plant-1 whereas it decreased as 3.43, 2.83 and 2.36 g plant-1 depending on increasing salt applications. In unsalted and 2.5 mg Cd kg-1 application, dry matter yield was 3.0 g plant-1 while it reached to as 1.64 g plant-1 by increasing almost two-folds with the highest salt dose. It was determined that Cd uptake was increased when the soil contaminated with a low amount of Cd was together with salinity. Although K concentrations in green plant parts tended to decrease in all salt applications, it decreased from 4.19 to 3.06 mg kg-1 in the treatment of 2.5 mg Cd kg-1 and 1800 mg NaCl kg-1. In conclusion, it was found that Cd uptake in broccoli might be high in salty soils and thus there was a need for determining broccoli varieties accumulating lower amount of Cd.

Kaynakça

  • Referans1 Abu-Muriefah, S.S. 2008. Growth parameters and elemental status of cucumber (Cucumus sativus) seedlings in response to cadmium accumulation. International Journal of Agriculture and Biology, 10:261–266.
  • Referans2 Alexander, P.D., Alloway, B.J. ve Dourado, A.M. 2006. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environ. Pollut, 144:736–745.
  • Referans3 Ali, H., Khan, E. ve Sajad, M.A., 2013. Phytoremediation of heavy metals – concepts and applications. Chemosphere, 91:869–881.
  • Referans4 Alloway, B. J. Heavy metals in soils, Chapman&Hall, London, UK, 1995.
  • Referans5 Avila, P.F., Ferreira, D.S.E. ve Candeias, C., 2017. Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ. Geochem. Hlth, 39:565–589.
  • Referans6 Bakhshayesh, E.B., Delkash, M., ve Scholz, M. 2014. Response of vegetables to cadmium-enriched soil. Water, 6(5):1246-1256.
  • Referans7 Baszynski, T. 1986. Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants. Acta Soc. Bot. Pol, 55:291- 304
  • Referans8 Bergman, W., 1992. Nutritional Disorders of Plants-Development, Visual and Analytical Diagnosis. Fischer Verlag. Jena.
  • Referans9 Bouyoucous, G. J. 1952. Hydrometer method improved for making particle size at analysis of soil. Argon. J, 54(5):464-465.
  • Referans10 Cheng, M., Kopittke, P.M., Wang, A. ve Tang, C., 2018. Salinity decreases Cd translocationby altering Cd speciation in the halophytic Cd-accumulator Carpobrotus rossii. Ann. Bot. 123:121–132.
  • Referans11 Çağlar, K.Ö. 1949. Toprak bilgisi. Ankara Üniveristesi Ziraat Fakültesi Yayınları, Ankara.
  • Referans12 Essa, T.A. 2002. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188(2):86-93.
  • Referans13 Fan, Y., Li, H., Xue, Z., Zhang, Q. ve Cheng, F., 2017. Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecol. Eng, 102:367–373.
  • Referans14 FAO, 2004. Food and agriculture organization of the United Nations. http://faostat.fao.org.
  • Referans15 FAO, 2014. Food and agriculture organization of the United Nations. http://faostat.fao.org.
  • Referans16 Fernández‐García, N., Martínez, V., & Carvajal, M. (2004). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167(5):616-622.
  • Referans17 Ghallab, A. ve Usman, A.R.A., 2007. Effect of sodium chloride-induced salinity on phytoavailability and speciation of Cd in soil solution. Water Air Soil Pollut, 185:43-51.
  • Referans18 Gharaibeh, M.A., Marschner, B. ve Heinze, S. 2015. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions. Environ. Sci. Pollut. Res, 22:18894-18905.
  • Referans19 Hadi, F., Ali, N. ve Ahmad, A. 2014. Enhanced phytoremediation of cadmium-contaminated soil by parthenium hysterophorus plant: effect of gibberellic acid (GA3) and synthetic chelator, alone and in combinations. Bioremediation Journal, 18(1): 46–55.
  • Referans20 Jackson, M.L. 1959. Soil chemical analysis. Englewood Cliffs, New Jersey.
  • Referans21 Ji, Y., Wu, P., Zhang, J., Zhang, J., Zhou, Y., Peng, Y., Zhang, S., Cai, G. ve Gao, G. 2018. Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: a case study along the Le'an river. Chemosphere, 199:361–371.
  • Referans22 Jinadasa, K.B.P.N., Milham, P.J., Hawkins, C.A., Cornish, P.S., Williams, P.A., Kaldor, J. ve Conroy, J.P. 1997. Survey of Cd levels in vegetables and soils of Greater Sidney. Australia. J. Environ. Qual, 26: 924-933.
  • Referans23 Karaoğlu, M. ve Yalçın, A.M. 2018. Toprak tuzluluğu ve Iğdır Ovası örneği. Journal of Agriculture, 1(1):27-41.
  • Referans24 Kumar, V., Chopra, A.K. ve Srivastava, S., 2016. Assessment of heavy metals in spinach spinacia oleracea L.) grown in sewage sludgeeamended soil. Commun. Soil Sci. Plant Anal, 47:221-236.
  • Referans25 Lindsay, W.L. ve Norvell, W.L. 1978. Development of a DTPA soil test for zinc, iron, manganese, copper. Soil. Sci. Soc. Am, 42:421-428.
  • Referans26 Lutts, S. ve Lefevre, I., 2015. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann. Bot, 115:509–528.
  • Referans27 Mahar, A., Wang, P., Ali, A., Awasthi, M.K., Lahori, A.H., Wang, Q., Li, R. ve Zhang, Z., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf, 126:111–121.
  • Referans28 Mataka, L.M., Henry, E.M.T., Masamba, W.R.L. ve Sajidu, S.M. 2006. Lead remediation of contaminated water using Moringa stenopetala sp., and Moringa oleifera sp., seed powder. Inter. J. Envir. Sci. & Tech, 3(2):131-139.
  • Referans29 McBride, M.B. 2003. Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks. Advances in Environmental Research. 8(1):5-19.
  • Referans30 Mombo, S., Foucault, Y., Deola, F., Gaillard, I., Goix, S., Shahid, M., Schreck, E., Pierart, A. ve Dumat, C., 2016. Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J. Soils Sediments, 16:1069-1077.
  • Referans31 Moya, J.L., R. Ros ve I. Picazo. 1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosyn. Res, 36(2):75-80.
  • Referans32 Mühling, K.H. ve Lauchli, A. 2003. Interaction of NaCl and Cd stress on compartmentation pattern of cations, antioxidant enzymes and proteins in leaves of two wheat genotypes differing in salt tolerance. Plant Soil, 253(1): 219-231.
  • Referans33 Norvell, W.A., Wu, J., Hopkins, D.G, Welch, R.M. 2000. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci Soc Am J, 64:2162–8.
  • Referans34 Padmaja, K., Prasad, D.D.K. ve Prasad, A.R.K. 1990. Inhibition of chlorophyll synthesis in phaseolus vulgaris seedlings by cadmium acetate. Photosynth, 24(3):399-405.
  • Referans35 Pandolfi, C., Mancuso, S. Ve Shabala, S., 2012. Physiology of acclimation to salinity stress in pea (Pisum sativum). Environ. Exp. Bot, 84:44-51.
  • Referans36 Panta, S., Flowers, T., Lane, P., Doyle, R., Haros, G. ve Shabala, S., 2014. Halophyte agriculture: success stories. Environ. Exp. Bot, 107:71-83.
  • Referans37 Pratt, P.F. 1965. Potassium. editor C. A. black, methods of soil analysis part II. American Socienty of Agronomy Inc., Publisher Madion, Winconsin, USA, pp. 1022.
  • Referans38 Qureshi, M.I., D'Amici, G.M., Fagioni, M., Rinalducci, S. ve Zolla, L., 2010. Iron stabilizes thylakoid proteinepigment complexes in Indian mustard during Cdphytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. J. Plant Physiol, 167: 761-770.
  • Referans39 Rehman, M.Z.U., Khalid, H., Akmal, F., Ali, S., Rizwan, M., Qayyum, M.F., Iqbal, M., Khalid, M.U. ve Azhar, M., 2017. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environ. Pollut, 227:560–568.
  • Referans40 Rizwan, M., Meunier, J.D., Miche, H. ve Keller, C. 2012. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J. Hazard Mater, 209–210:326–334.
  • Referans41 Sairam, R.K. ve Tyagi, A. 2004. Physiology and molecular biology of salinity stress tolerance in plants, Current Science. 407-421.
  • Referans42 Schlichting, E. ve Blume, H.P. 1966. Bodenkundliches praktikum. verlag paul parey. Hamburg- Berlin.
  • Referans43 Schmidt, U. 2003. Enhancing phytoextraction: The effect of chemical soil manipulation on mobility, plant accumulation and leaching of heavy metals. Journal of Environmental Quality, 32:1939-1954.
  • Referans44 Shafi, M., Zhang, G.P., Bakht, J., Khan, M.A. Islam, E., Dawood, M.K. ve Raziuddin, Y. 2010. Effect of cadmium and salinity stresses on root morphology of wheat. Pak. J. Bot, 42(4): 2747-2754.
  • Referans45 Shafi, M., Bakht, J., Raziuddin, Y.. Hayat ve Zhang, G. 2011. Genotypic differences in the inhibition of photosynthesis and chlorophyll fluorescence by salinity and cadmium stresses on stresses in wheat. J. Plant. Nutri, 34: 315-23.
  • Referans46 Sirguey, C. ve Ouvrard, S. 2013. Contaminated soils salinity, a threat for phytoextraction. Chemosphere, 91(3):269-274.
  • Referans47 Smolders, E. ve McLaughlin, M.J., 1996. Effect of Cl on Cd uptake by Swiss chard in nutrient solutions. Plant Soil, 179:57–64.
  • Referans48 Smolders, E., Mertens, J., 2013. Cadmium. heavy metals in soils: Trace metals and metalloids in soils and their bioavailability. Springer, Netherlands (Chapter 10).
  • Referans49 Smykalova, I. ve Zamecnikova, B. 2003. The relationship between salinity and cadmiu stress in barley. Biologia plantarum, 46(2):269-273.
  • Referans50 Tang, L., Luo, W.J., He, Z.L., Gurajala, H.K., Hamid, Y., Khan, K.Y. ve Yang, X.E. 2018. Variations in cadmium and nitrate co-accumulation among water spinach genotypes and implications for screening safe genotypes for human consumption. J. Zhejiang Univ. - Sci. B, 19:147–158.
  • Referans51 U. S. Salinity Laboratory Staff 1954. Diagnosis and improvement of saline and alkaline soils (Ed L. A. Richards). USDA Agriculture Handbook B, No: 60, U. S. Gov. Printing Office, Washington, 160P.
  • Referans52 Wang, W., Vinocur, B., Shoseyov, O. ve Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci, 9:244-252.
  • Referans53 Watanabe, F.S. ve Olsen, S.R. 1995. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils. Soil Sci. Soc. Am. Proc, 29:677-678.
  • Referans54 Wei, Y., Zheng, X., Shohag, M.J.I. ve Gu, M. 2017. Bioaccessibility and human exposure assessment of cadmium and arsenic in pakchoi genotypes grown in Co-contaminated soils. Int. J. Environ. Res. Public Health, 14, 977.
  • Referans55 Weigel, H.J. ve Jager, H.J. 1980. Subcellular distribution and chemical forms of cadmium in bean plants. Plant Physiol, 65: 480-482.
  • Referans56 WHO, 2004. World health organization. http://who.org.
  • Referans57 WHO, 2014. World health organization. http:// who.org.
  • Referans58 Zheng, G., Lv, H.P., Gao, S. ve Wang, S.R. 2010. Effects of cadmium on growth and antioxidant responses in Glycyrrhiz auralensis seedlings. Plant, Soil and Environment, 56:508-515.
  • Referans59 Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6:441-445.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Faruk Özkutlu 0000-0002-8651-3346

Yayımlanma Tarihi 23 Ocak 2021
Gönderilme Tarihi 31 Mart 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

APA Özkutlu, F. (2021). Kadmiyum (Cd) ve NaCl Uygulamalarının Brokolide (Brassica oleracea var. italica) Kuru Madde Miktarı ve Besin Elementi İçeriğine Etkisi. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(1), 77-84. https://doi.org/10.30910/turkjans.712033