Research Article
BibTex RIS Cite

Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması

Year 2021, Volume: 8 Issue: 2, 250 - 261, 23.04.2021
https://doi.org/10.30910/turkjans.876603

Abstract

Bu çalışma kurşun asetat (PbA) kaynaklı karaciğer hasarı üzerine chrysinin (CH) etkilerinin araştırılması amacıyla yapıldı. Çalışmada 35 adet Sprague Dawley cinsi erkek rat, her grupta 7 rat olacak şekilde 5 gruba ayrıldı. 1. Grup (Kontrol): Oral yolla serum fizyolojik verildi. 2. Grup (CH grubu): CH (50 mg kg-1 ağırlık gün-1) 7 gün boyunca oral olarak ratlara verildi. 3. Grup (PbA grubu): PbA (30 mg kg-1) 7 gün boyunca 30 mg kg-1 PbA oral yolla ratlara verildi. 4. Grup (PbA+CH 25 grubu): 7 gün boyunca 25 mg/kg CH uygulamasından 30 dakika sonra 30 mg kg-1 PbA ratlara oral yoldan verildi. 5. Grup (PbA +CH 50 grubu): 7 gün süreyle 50 mg/kg CH uygulamasından 30 dakika sonra 30 mg kg-1 PbA ratlara oral yoldan verildi. Son uygulamadan 24 saat sonra (8.günde) ratlar hafif sevofloran anestezisi altında ötenazileri yapılarak, doku ve kan örnekleri alındı. Serumda Aspartat Aminotransferaz (AST), Alanin Aminotransferaz (ALT) ve Alkalin Fosfataz (ALP) düzeylerine, karaciğer dokusunda Malondialdehit (MDA), Glutatyon (GSH) ve Nitrik Oksit (NO.) düzeyleri ile Süperoksid Dismutaz (SOD), Katalaz (CAT), Glutatyon Peroksidaz (GSH-Px) ve Arginaz enzim aktivitelerine bakıldı. Kontrol ile kıyaslandığı zaman serum ALT, AST ve ALP düzeyleri PbA verilen grupta arttı, bu artış CH ile kısmen düzeltildi. Karaciğer MDA ve NO. düzeyleri PbA verilen gruplarda artarken, antioksidan enzim aktiviteleri ile GSH düzeyi azaldı. CH uygulanması; artan MDA ve NO. düzeylerini azalttı, azalan antioksidan enzim aktiviteleri ile GSH düzeylerini ise artırdı. Histolojik olarak bakıldığında ise, kontrol ve CH gruplarındaki ratların karaciğer dokuları normal histolojik görünümdeydi. Tek başına PbA uygulanan grup ratlarının karaciğerlerinde hepatositlerde şiddetli düzeyde nekrotik değişiklikler ve hidropik dejenerasyonlar görüldü. PbA+CH 25 grubundaki ratların karaciğerlerinde hepatositlerde orta düzeyde nekrotik değişiklikler ve hidropik dejenerasyonlar görüldü. Bu gruplarda ayrıca yer yer periportal ve perivasküler alanlarda mononükleer hücre infiltrasyonlarına rastlandı. PbA ile birlikte CH 50 uygulanan gruptaki ratların karaciğerlerinde ise nekroz, hidropik dejenerasyonlar ve mononükleer hücre infiltrasyonlarının azaldığı belirlendi. Sonuç olarak karaciğerde PbA kaynaklı hasarlarını azaltmada CH etkili olmuştur.

Supporting Institution

MÜNİBAP

Project Number

YLMUB017-24

Thanks

Tez çalışmamın planlanması ve yürütülmesinde bilgi ve tecrübesiyle bana ışık tutan I. Danışman hocam danışman Prof. Dr. Fulya BENZER’e, deneysel çalışmamı yürütmemde ve analizlerin yapılmasında her türlü yardımı yapan Atatürk Üniversitesi Veteriner Fakültesi, Biyokimya A.D öğretim üyesi II. Danışman hocam Prof. Dr. Fatih Mehmet KANDEMİR’e sonsuz teşekkürlerimi sunarım. Çalışmalarımın histopatolojik analizlerini yapan Atatürk Üniversitesi, Veteriner Fakültesi, Patoloji A.D öğretim üyesi Doç. Dr. Serkan YILDIRIM’a, deneysel ve laboratuar çalışmalarında yardımcı olan Atatürk Üniversitesi Veteriner Fakültesi, Biyokimya A.D Dr. öğretim üyesi Sefa KÜÇÜKLER’e ayrıca bu projeye maddi destek sağlayan Munzur Üniversitesi Bilimsel Araştırma Projeleri Birimine (MÜNİBAP) teşekkürlerimi bir borç bilirim.

References

  • Aebi. H. 1983. Catalase. In: H.U. Bergmeyer, editor. Methods in enzymatic analysis. New York: Academic Press, , pp 276–286.
  • Blankenberg, S., Rupprecht, H.J., Bickel, C., Torzewski, M., Hafner, G., Tiret, L., Smieja, M., Cambien, F., Meyer, J., Lackner, K.J. 2003. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med., 349:1605–1613.
  • Chen, Y., Ji, L., Wang, H., Wang, Z. 2009. Intracellular glutathione plays important roles in pyrrolizidine alkaloids-induced growth inhibition on hepatocytes. Environ. Toxicol. Pharmcol., 28:357–362.
  • Chrzanowska, .A, Krawczyk, M., Barańczyk-Kuźma, A. 2008.Changes in arginase isoenzymes pattern in human hepatocellular carcinoma. Biochem Biophys Res Commun; 377: 337-40.
  • Çay, M. 2012. Ratlarda subkronik formaldehit zehirlenmelerinin karaciğerde neden olduğu hasara karşı chrysin’in etkileri. Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü, Malatya, 45s.
  • Demir, F., Ozan, G., Temizer Ozan, P. S. 2015. Ratlara Uygulanan Kurşun Asetatın Karaciğer Arginazına Etkisi ve Enzimin Bazı Kinetik Özellikleri. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 29, (1):37-43.
  • Flora, G., Gupta, D., Tıwar, A. 2012. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. Vol. 5(2): 47–58.
  • Flora, S.J., Pande, M., Mehta, A. 2003. Benefi cial eff ect of combined administration of some naturally occurring antioxidants (vitamins) and thiol chelators in the treatment of chronic lead intoxication. Chem Biol Interact. 145: 267–280.
  • Geyer JW, Dabich D. 1971. Rapid method for determination of arginase activity in tissue homogenates. Anal Biochem.39:412-7.
  • Grisham, M.B. 1997. Reactive metabolites of oxygen and nitrogen in biology and medicine. Biochem. Biophys. Res. Commun., 169: 70-75.
  • Gülçin, Y., Can, G., Şahin, Ü. 2002. Çocuklarda asemptomatik kurşun zehirlenmesi. Cerrahpaşa Tıp Dergisi, 33:197-204.
  • Halliwell, B. 1997.What nitrates tyrosineV Is nitrotyrosine specilic as a biomarker of peroxynitrate formation in vivo. FEBS U'tt, 411:157-160.
  • Hsu, P.C., Guo, Y.L. 2002. Antioxidant nutrients and lead toxicity. Toxicology, 180: 33–44.
  • Ikemoto, M., Tabata, M., Murachi, T., Totani, M., 1989. Purification and properties of human erytrocyte arginase. Ann Clin Biochem., 26(6):547-553.
  • Jaganathan, S., K., Mandal, M. 2009. BioMed Res. Int Eur. J. Pharmacol., 728:107–118.
  • Kandemir, F. M., Özdemir, N. 2008. Sığır Dalak Doku Arginazının Bazı Kinetik Özellikleri. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 22 (3):153-158.
  • Kasperczyk, S., Dobrakowski, M., Kasperczyk, A., Machnik, G., Birkner, E. 2014. Effect of Nacetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers. Environ. Toxicol. Pharmacol.,37:638-647.
  • Lawrence, R. A., Burk, R. F. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71:4, 952–958.
  • Lawton, L.J., Donaldson, W.E. 1991. Lead-induced tissue fatty acid alterations and lipid peroxidation. Biol. Trace Elem. Res., 28:83-97.
  • Liu, Z., Chen, Y., Wang, D., Wang, S., Zhang, Y.Q. 2010. Distinct Presynaptic and Postsynaptic Dismantling Processes of Drosophila Neuromuscular Junctions during Metamorphosis. J. Neurosci. 30(35): 11624--11634.
  • Liu, C.M., Ma, J.Q., Sun, Y.Z. 2012. Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Exp. Toxicol. Pathol., 64:575-582.
  • Mantawy, E.M., Esmat, A., El-Bakly, W.M., Salah ElDin, R.A., El-Demerdash, E. 2017. Mechanistic clues to the protective effect of chrysin against doxorubicininduced cardiomyopathy: plausible roles of p53, MAPK and AKT pathways. Sci. Rep. 7, 4795.
  • Matović,V., Buha, A., Ðukić-Ćosić, D., Bulat, Z. 2015. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys, Food and Chemical Toxicology, 78:130-14. Omobowale, T.O., Oyagbemi, A.A., Akinrinde, A.S., Saba, A.B., Daramola, O.T., Ogunpolu, B.S., Olopade, J.O. 2014. Failure of recovery from lead induced hepatoxicityand disruption of erythrocyte antioxidant defencesystem in Wistar rats. environmental toxicology and pharmacology 37:1202–1211.
  • Palmer, R.M.J., Moncada, S. 1989. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vasculer endothelial cells. Biochemical and Biophysical Research Communications, 158:348-352.
  • Patil, A.J. Bhagwat, V.R.,Jyotsna, Dongre, N.N., Ambekar, J.G, Das, K.K. 2006. Bıochemıcal aspects of lead exposure in sılver jewelry workers in western Maharashtra (India). J Basic Clin Physiol Pharmacol. 17(4):213-29.
  • Patra, R.C., Rautray, A.K., Swarup, D. 2011. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration. Vet Med Int. 457327. doi: 10.4061/2011/457327.
  • Phaniendra, A., Jestadi, D.B., Periyasamy, L. 2015. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind J Clin Biochem. 30(1):11–26. Pionelli, S. 2002. Childhood lead poisoning. Pediatr Clin North Am, 49:1285-304.
  • Placer, Z. A., Cushman, L. L., Johnson, B. C. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364.
  • Pushpavalli, G., Kalaiarasi, P., Veeramani, C., Pugalendi, K. V. 2010. Eur. J. Pharmacol., 631:36–41.
  • Saxena, G., Pathak, U., Flora, S.J.S. 2005. Beneficial role ofmonoesters of meso-2,3-dimercaptosuccinic acid in themobilization of lead and recovery of tissue oxidative injury inrats. Toxicology, 214:39–56.
  • Sedlak, J., Lindsay, R. H. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25:1, 192–205.
  • Shalana, M.G., Mostafa, M.S., Hassouna, M.M., Hassab El-Nabi,S.E., El-Refaie, A. 2005. Amelioration of lead toxicity on ratliver with vitamin C and silymarin supplements. Toxicology, 206:1–15.
  • Sivaprasad, R., Nagaraj, M., Varalakshmi, P. 2004. Combined efficacies of lipoic acid and 2,3- dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. J. Nutr. Biochem., 15:18-23.
  • Sun, Y., Oberley, L. W., Li, Y. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34:3, 497–500.
  • Tandon, S.K., Prasad, S., Singh, S., Shukla, M., Chatterjee, M. 2002. Influence of age on leadinduced oxidative stress. Biol. Trace Element Res., 88: 59-68.
  • Trefts, E., Gannon, M., Wasserman D.H. 2017. The liver. Current Biology, 27:1141–1155.
  • Valverde, M., Trejo, C., Rojas, E., 2001. Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis, 16(3):265-270.
  • Vaziri, N.D., Ding, Y., Ni, Z., Gonick, H.C. 1997. Altered nitric oxide metabolism and increased oxygen tree radical activity in Icad-induced hypertension: effect of lazaroid therapy. Kidney Int., 52:1042-1046.
  • Vaziri, N.D., Oveisi, F., Ding.,Y. 1998. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int., 53:1748- 1754.
  • Vaziri, N.D., Wang, X.Q., Oveisi, F., Rad, B. 2000. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension, 36:142-146.
  • Wang, G., Fowler, B.A. 2008. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol. Appl. Pharmacol., 233:92-99.
  • Xu, J., Lian, L.J., Wu, C., Wang, X.F., Fu, W.Y., Xu, L.H. 2008. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem. Toxicol., 46:1488-1494.
Year 2021, Volume: 8 Issue: 2, 250 - 261, 23.04.2021
https://doi.org/10.30910/turkjans.876603

Abstract

Project Number

YLMUB017-24

References

  • Aebi. H. 1983. Catalase. In: H.U. Bergmeyer, editor. Methods in enzymatic analysis. New York: Academic Press, , pp 276–286.
  • Blankenberg, S., Rupprecht, H.J., Bickel, C., Torzewski, M., Hafner, G., Tiret, L., Smieja, M., Cambien, F., Meyer, J., Lackner, K.J. 2003. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med., 349:1605–1613.
  • Chen, Y., Ji, L., Wang, H., Wang, Z. 2009. Intracellular glutathione plays important roles in pyrrolizidine alkaloids-induced growth inhibition on hepatocytes. Environ. Toxicol. Pharmcol., 28:357–362.
  • Chrzanowska, .A, Krawczyk, M., Barańczyk-Kuźma, A. 2008.Changes in arginase isoenzymes pattern in human hepatocellular carcinoma. Biochem Biophys Res Commun; 377: 337-40.
  • Çay, M. 2012. Ratlarda subkronik formaldehit zehirlenmelerinin karaciğerde neden olduğu hasara karşı chrysin’in etkileri. Yüksek Lisans Tezi, İ.Ü. Fen Bilimleri Enstitüsü, Malatya, 45s.
  • Demir, F., Ozan, G., Temizer Ozan, P. S. 2015. Ratlara Uygulanan Kurşun Asetatın Karaciğer Arginazına Etkisi ve Enzimin Bazı Kinetik Özellikleri. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 29, (1):37-43.
  • Flora, G., Gupta, D., Tıwar, A. 2012. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. Vol. 5(2): 47–58.
  • Flora, S.J., Pande, M., Mehta, A. 2003. Benefi cial eff ect of combined administration of some naturally occurring antioxidants (vitamins) and thiol chelators in the treatment of chronic lead intoxication. Chem Biol Interact. 145: 267–280.
  • Geyer JW, Dabich D. 1971. Rapid method for determination of arginase activity in tissue homogenates. Anal Biochem.39:412-7.
  • Grisham, M.B. 1997. Reactive metabolites of oxygen and nitrogen in biology and medicine. Biochem. Biophys. Res. Commun., 169: 70-75.
  • Gülçin, Y., Can, G., Şahin, Ü. 2002. Çocuklarda asemptomatik kurşun zehirlenmesi. Cerrahpaşa Tıp Dergisi, 33:197-204.
  • Halliwell, B. 1997.What nitrates tyrosineV Is nitrotyrosine specilic as a biomarker of peroxynitrate formation in vivo. FEBS U'tt, 411:157-160.
  • Hsu, P.C., Guo, Y.L. 2002. Antioxidant nutrients and lead toxicity. Toxicology, 180: 33–44.
  • Ikemoto, M., Tabata, M., Murachi, T., Totani, M., 1989. Purification and properties of human erytrocyte arginase. Ann Clin Biochem., 26(6):547-553.
  • Jaganathan, S., K., Mandal, M. 2009. BioMed Res. Int Eur. J. Pharmacol., 728:107–118.
  • Kandemir, F. M., Özdemir, N. 2008. Sığır Dalak Doku Arginazının Bazı Kinetik Özellikleri. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 22 (3):153-158.
  • Kasperczyk, S., Dobrakowski, M., Kasperczyk, A., Machnik, G., Birkner, E. 2014. Effect of Nacetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers. Environ. Toxicol. Pharmacol.,37:638-647.
  • Lawrence, R. A., Burk, R. F. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71:4, 952–958.
  • Lawton, L.J., Donaldson, W.E. 1991. Lead-induced tissue fatty acid alterations and lipid peroxidation. Biol. Trace Elem. Res., 28:83-97.
  • Liu, Z., Chen, Y., Wang, D., Wang, S., Zhang, Y.Q. 2010. Distinct Presynaptic and Postsynaptic Dismantling Processes of Drosophila Neuromuscular Junctions during Metamorphosis. J. Neurosci. 30(35): 11624--11634.
  • Liu, C.M., Ma, J.Q., Sun, Y.Z. 2012. Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead. Exp. Toxicol. Pathol., 64:575-582.
  • Mantawy, E.M., Esmat, A., El-Bakly, W.M., Salah ElDin, R.A., El-Demerdash, E. 2017. Mechanistic clues to the protective effect of chrysin against doxorubicininduced cardiomyopathy: plausible roles of p53, MAPK and AKT pathways. Sci. Rep. 7, 4795.
  • Matović,V., Buha, A., Ðukić-Ćosić, D., Bulat, Z. 2015. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys, Food and Chemical Toxicology, 78:130-14. Omobowale, T.O., Oyagbemi, A.A., Akinrinde, A.S., Saba, A.B., Daramola, O.T., Ogunpolu, B.S., Olopade, J.O. 2014. Failure of recovery from lead induced hepatoxicityand disruption of erythrocyte antioxidant defencesystem in Wistar rats. environmental toxicology and pharmacology 37:1202–1211.
  • Palmer, R.M.J., Moncada, S. 1989. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vasculer endothelial cells. Biochemical and Biophysical Research Communications, 158:348-352.
  • Patil, A.J. Bhagwat, V.R.,Jyotsna, Dongre, N.N., Ambekar, J.G, Das, K.K. 2006. Bıochemıcal aspects of lead exposure in sılver jewelry workers in western Maharashtra (India). J Basic Clin Physiol Pharmacol. 17(4):213-29.
  • Patra, R.C., Rautray, A.K., Swarup, D. 2011. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration. Vet Med Int. 457327. doi: 10.4061/2011/457327.
  • Phaniendra, A., Jestadi, D.B., Periyasamy, L. 2015. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind J Clin Biochem. 30(1):11–26. Pionelli, S. 2002. Childhood lead poisoning. Pediatr Clin North Am, 49:1285-304.
  • Placer, Z. A., Cushman, L. L., Johnson, B. C. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364.
  • Pushpavalli, G., Kalaiarasi, P., Veeramani, C., Pugalendi, K. V. 2010. Eur. J. Pharmacol., 631:36–41.
  • Saxena, G., Pathak, U., Flora, S.J.S. 2005. Beneficial role ofmonoesters of meso-2,3-dimercaptosuccinic acid in themobilization of lead and recovery of tissue oxidative injury inrats. Toxicology, 214:39–56.
  • Sedlak, J., Lindsay, R. H. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25:1, 192–205.
  • Shalana, M.G., Mostafa, M.S., Hassouna, M.M., Hassab El-Nabi,S.E., El-Refaie, A. 2005. Amelioration of lead toxicity on ratliver with vitamin C and silymarin supplements. Toxicology, 206:1–15.
  • Sivaprasad, R., Nagaraj, M., Varalakshmi, P. 2004. Combined efficacies of lipoic acid and 2,3- dimercaptosuccinic acid against lead-induced lipid peroxidation in rat liver. J. Nutr. Biochem., 15:18-23.
  • Sun, Y., Oberley, L. W., Li, Y. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34:3, 497–500.
  • Tandon, S.K., Prasad, S., Singh, S., Shukla, M., Chatterjee, M. 2002. Influence of age on leadinduced oxidative stress. Biol. Trace Element Res., 88: 59-68.
  • Trefts, E., Gannon, M., Wasserman D.H. 2017. The liver. Current Biology, 27:1141–1155.
  • Valverde, M., Trejo, C., Rojas, E., 2001. Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis, 16(3):265-270.
  • Vaziri, N.D., Ding, Y., Ni, Z., Gonick, H.C. 1997. Altered nitric oxide metabolism and increased oxygen tree radical activity in Icad-induced hypertension: effect of lazaroid therapy. Kidney Int., 52:1042-1046.
  • Vaziri, N.D., Oveisi, F., Ding.,Y. 1998. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int., 53:1748- 1754.
  • Vaziri, N.D., Wang, X.Q., Oveisi, F., Rad, B. 2000. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension, 36:142-146.
  • Wang, G., Fowler, B.A. 2008. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol. Appl. Pharmacol., 233:92-99.
  • Xu, J., Lian, L.J., Wu, C., Wang, X.F., Fu, W.Y., Xu, L.H. 2008. Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem. Toxicol., 46:1488-1494.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Pınar Coşkun 0000-0002-9170-5799

Fulya Benzer 0000-0003-1988-4267

Fatih Kandemir 0000-0002-8490-2479

Serkan Yıldırım 0000-0003-2457-3367

Sefa Küçükler 0000-0002-8222-5515

Project Number YLMUB017-24
Publication Date April 23, 2021
Submission Date February 8, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Coşkun, P., Benzer, F., Kandemir, F., Yıldırım, S., et al. (2021). Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. Turkish Journal of Agricultural and Natural Sciences, 8(2), 250-261. https://doi.org/10.30910/turkjans.876603