Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuraklık Stresi Altında Borago officinalis L.'de Antioksidan Savunma Sistemi

Yıl 2021, Cilt: 8 Sayı: 4, 1048 - 1055, 24.10.2021
https://doi.org/10.30910/turkjans.949626

Öz

Kuraklık, bitki büyümesini ve gelişmesini sınırlayan temel abiyotik stres faktörlerinden biridir. Bu çalışmada, kuraklık stresinin Borago officinalis (hodan) bitkisi üzerindeki fizyolojik ve antioksidan tepkileri açısından etkileri değerlendirilmiştir. Bu amaç doğrultusunda, bağıl büyüme oranı (RGR), yaprak bağıl su içeriği (RWC), ozmotik potansiyel, klorofil floresansı (Fv/Fm), lipid peroksidasyonu, hidrojen peroksit (H2O2) düzeyi, süperoksit dismutaz (SOD), peroksidaz (POX) , katalaz (CAT), askorbat peroksidaz (APX) ve glutatyon redüktaz (GR) aktiviteleri kontrollü bir serada kuraklık uygulaması altında belirlendi. RGR, RWC ve ozmotik potansiyel önemli ölçüde azalırken, tiyobarbutirik asit reaktif maddeleri (TBARS) olarak ifade edilen lipid peroksidasyonu ve H2O2 içerikleri kuraklık stresi altında arttı. Diğer taraftan, POX, CAT, APX ve GR aktivitelerindeki önemli artışlar lipid peroksidasyonundaki artışı engelleyemedi. Bildiğimiz kadarıyla bu çalışma, Borago officinalis'in enzimatik antioksidan savunma sistemi üzerine kuraklık stresi altında yapılan ilk çalışmadır.

Kaynakça

  • Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L., Dai, T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8: 4615.
  • Aebi, H. 1984. Catalase in vitro. In: Methods in Enzymology. (eds) Colowick, S.P., Kaplan, N.O., Orlando: Academic Press, 114–121.
  • Amoah, J.N., Ko, C.S., Yoon, J.S., Weon, S.Y. 2019. Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1): 492-505.
  • Basu, S., Roychoudhury, A., Saha, P.P., Sengupta, D.N. 2010. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60: 51.
  • Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276–287.
  • Borowy, A., Chwil, M., Kapłan, M. 2017. Biologically active compounds and antioxidant activity of borage (Borago officinalis L.) flowers and leaves. Acta Scientiarum Polonorum Hortorum Cultus, 16(5): 169-180.
  • Borowy, A., Kapłan, M. 2020. Chemical composition and antioxidant activity of borage (Borago officinalis L.) seeds. Acta Scientiarum Polonorum Hortorum Cultus, 19(6): 79-90.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72: 248–254.
  • Descamps, C., Quinet, M., Baijot, A., Jacquemart, A. 2018. Temperature and water stress affect plant–pollinator interactions in Borago officinalis (Boraginaceae). Ecology and Evolution, 8: 3443-3456.
  • Fernandes, L., Pereira, J.A., Saraiva, J.A., Ramalhosa, E., Casal, S. 2019. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Research International, 123: 771-778.
  • Foyer, C.H., Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133: 21–25.
  • Fracasso, A., Trindade, L., Amaducci, S. 2016. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology, 190: 1–14.
  • Gill, S.S., Anjum, N.A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S.C., Tuteja, N. 2015. Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22: 10375–10394.
  • Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., Fotopoulos, V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8): 681.
  • Hassan, N., Ebeed, H., Aljaarany, A. 2020. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants, 26: 233–245.
  • Heath, R. L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125: 189-198.
  • Hunt, R., Causton, D.R., Shipley, B., Askew, A.P. 2002. A modern tool for classical plant growth analysis. Annals of Botany, 90: 485-488.
  • Ings, J., Mur, L.A., Robson, P.R., Bosch. M. 2013. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. Frontiers and Plant Science, 4: 468–475.
  • Jaffel, K., Sai, S., Bouraoui, N.K., Ammar, R.B., Legendre, L., Lachâal, M., Marzouk, B. 2011. Influence of salt stress on growth, lipid peroxidation and antioxidative enzyme activity in borage (Borago officinalis L.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 145(2): 362-369.
  • Killi, D.; Raschi, A.; Bussotti, F. 2020. Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences, 21: 4846.
  • Liu, J., Lu, B., Xun, A.L. 2000. An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27: 548–551.
  • Mattos, L.M., Moretti, C.L. 2015. Oxidative stress in plants under drought conditions and the role of different enzymes. Enzyme Engineering, 5: 1.
  • Mika, A., Lüthje, S. 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132: 1489–1498.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405–410.
  • Mohajer, S., Taha, R.M., Ramli, R.B., Mohajer, M. 2016. Phytochemical constituents and radical scavenging properties of Borago officinalis and Malva sylvestris. Industrial Crops and Products, 94, 673-681.
  • Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867–880.
  • Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S. 2014. Response of plants to water stress. Frontiers in Plant Science, 5: 86.
  • Ozfidan-Konakci, C., Yildiztugay, E., Kucukoduk, M. 2015. Protective roles of exogenously applied gallic acid in Oryza sativa subjected to salt and osmotic stresses: effects on the total antioxidant capacity. Plant Growth Regulation, 75(1): 219-234.
  • Rady, M.M., Belal, H.E.E., Gadallah, F.M., Semida, W.M. 2020. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266: 109290.
  • Sarker, U., Oba, S. 2018. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports, 8: 16496.
  • Sekmen, A.H., Ozgur, R., Uzilday, B., Turkan, I. 2014. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99: 141-149.
  • Shahnaz, G., Shekoofeh, E., Kourosh, D., Moohamadbagher, B. 2011. Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. Journal of Medicinal Plants Research, 5(24): 5818-5827.
  • Sun, Y., Wang, C., Chen, H., Ruan, H. 2020. Response of Plants to Water Stress: A Meta-Analysis. Frontiers in Plant Science, 11, 978.
  • Torabi, F., Majd, A., Enteshari, S. 2015. The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Science and Plant Nutrition, 61(5): 788-798.
  • Torun, H. 2019. Combined salt and nickel stress ımpact on ros generation and antioxidant enzymes activities of lemon balm (Melissa officinalis). Turkish Journal of Agricultural and Natural Sciences, 6(1): 97–105.
  • Zemmouri, H., Ammar, S., Boumendjel, A., Messarah, M., El Feki, A., Bouaziz, M. 2019. Chemical composition and antioxidant activity of Borago officinalis L. leaf extract growing in Algeria. Arabian Journal of Chemistry, 12(8): 1954-1963.
  • Zhou, Y., Lam, H.M., Zhang, J. 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58(5): 1207–1217.

Antioxidant Defense System in Borago officinalis L. under Drought Stress

Yıl 2021, Cilt: 8 Sayı: 4, 1048 - 1055, 24.10.2021
https://doi.org/10.30910/turkjans.949626

Öz

Drought is one of the main abiotic stress factor that limits plant growth and development. Drought stress effects on Borago officinalis L. (borage) plants in terms of physiological and antioxidant responses have been evaluated in this study. In parallel with this purpose, relative growth rate (RGR), leaf relative water content (RWC), osmotic potential, chlorophyll fluorescence (Fv/Fm), lipid peroxidation, hydrogen peroxide (H2O2) level, superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) activities were determined under drought treatment in a controlled greenhouse. RGR, RWC and osmotic potential were significantly decreased, while lipid peroxidation expressed thiobarbutiric acid reactive substances (TBARS) and H2O2 contents were increased under drought stress. On the other hand, significant increases in POX, CAT, APX and GR activities did not prevent the increase in lipid peroxidation. To the best of our knowledge, this is the first study conducted on the enzymatic antioxidants of the defense system of Borago officinalis L. under drought stress.

Kaynakça

  • Abid, M., Ali, S., Qi, L.K., Zahoor, R., Tian, Z., Jiang, D., Snider, J.L., Dai, T. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8: 4615.
  • Aebi, H. 1984. Catalase in vitro. In: Methods in Enzymology. (eds) Colowick, S.P., Kaplan, N.O., Orlando: Academic Press, 114–121.
  • Amoah, J.N., Ko, C.S., Yoon, J.S., Weon, S.Y. 2019. Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1): 492-505.
  • Basu, S., Roychoudhury, A., Saha, P.P., Sengupta, D.N. 2010. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60: 51.
  • Beauchamp, C., Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276–287.
  • Borowy, A., Chwil, M., Kapłan, M. 2017. Biologically active compounds and antioxidant activity of borage (Borago officinalis L.) flowers and leaves. Acta Scientiarum Polonorum Hortorum Cultus, 16(5): 169-180.
  • Borowy, A., Kapłan, M. 2020. Chemical composition and antioxidant activity of borage (Borago officinalis L.) seeds. Acta Scientiarum Polonorum Hortorum Cultus, 19(6): 79-90.
  • Bradford, M.M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72: 248–254.
  • Descamps, C., Quinet, M., Baijot, A., Jacquemart, A. 2018. Temperature and water stress affect plant–pollinator interactions in Borago officinalis (Boraginaceae). Ecology and Evolution, 8: 3443-3456.
  • Fernandes, L., Pereira, J.A., Saraiva, J.A., Ramalhosa, E., Casal, S. 2019. Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Research International, 123: 771-778.
  • Foyer, C.H., Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133: 21–25.
  • Fracasso, A., Trindade, L., Amaducci, S. 2016. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology, 190: 1–14.
  • Gill, S.S., Anjum, N.A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S.C., Tuteja, N. 2015. Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22: 10375–10394.
  • Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., Fotopoulos, V. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8): 681.
  • Hassan, N., Ebeed, H., Aljaarany, A. 2020. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants, 26: 233–245.
  • Heath, R. L., Packer, L. 1968. Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125: 189-198.
  • Hunt, R., Causton, D.R., Shipley, B., Askew, A.P. 2002. A modern tool for classical plant growth analysis. Annals of Botany, 90: 485-488.
  • Ings, J., Mur, L.A., Robson, P.R., Bosch. M. 2013. Physiological and growth responses to water deficit in the bioenergy crop Miscanthus × giganteus. Frontiers and Plant Science, 4: 468–475.
  • Jaffel, K., Sai, S., Bouraoui, N.K., Ammar, R.B., Legendre, L., Lachâal, M., Marzouk, B. 2011. Influence of salt stress on growth, lipid peroxidation and antioxidative enzyme activity in borage (Borago officinalis L.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 145(2): 362-369.
  • Killi, D.; Raschi, A.; Bussotti, F. 2020. Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences, 21: 4846.
  • Liu, J., Lu, B., Xun, A.L. 2000. An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27: 548–551.
  • Mattos, L.M., Moretti, C.L. 2015. Oxidative stress in plants under drought conditions and the role of different enzymes. Enzyme Engineering, 5: 1.
  • Mika, A., Lüthje, S. 2003. Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132: 1489–1498.
  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405–410.
  • Mohajer, S., Taha, R.M., Ramli, R.B., Mohajer, M. 2016. Phytochemical constituents and radical scavenging properties of Borago officinalis and Malva sylvestris. Industrial Crops and Products, 94, 673-681.
  • Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22: 867–880.
  • Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S. 2014. Response of plants to water stress. Frontiers in Plant Science, 5: 86.
  • Ozfidan-Konakci, C., Yildiztugay, E., Kucukoduk, M. 2015. Protective roles of exogenously applied gallic acid in Oryza sativa subjected to salt and osmotic stresses: effects on the total antioxidant capacity. Plant Growth Regulation, 75(1): 219-234.
  • Rady, M.M., Belal, H.E.E., Gadallah, F.M., Semida, W.M. 2020. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266: 109290.
  • Sarker, U., Oba, S. 2018. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports, 8: 16496.
  • Sekmen, A.H., Ozgur, R., Uzilday, B., Turkan, I. 2014. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environmental and Experimental Botany, 99: 141-149.
  • Shahnaz, G., Shekoofeh, E., Kourosh, D., Moohamadbagher, B. 2011. Interactive effects of silicon and aluminum on the malondialdehyde (MDA), proline, protein and phenolic compounds in Borago officinalis L. Journal of Medicinal Plants Research, 5(24): 5818-5827.
  • Sun, Y., Wang, C., Chen, H., Ruan, H. 2020. Response of Plants to Water Stress: A Meta-Analysis. Frontiers in Plant Science, 11, 978.
  • Torabi, F., Majd, A., Enteshari, S. 2015. The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Science and Plant Nutrition, 61(5): 788-798.
  • Torun, H. 2019. Combined salt and nickel stress ımpact on ros generation and antioxidant enzymes activities of lemon balm (Melissa officinalis). Turkish Journal of Agricultural and Natural Sciences, 6(1): 97–105.
  • Zemmouri, H., Ammar, S., Boumendjel, A., Messarah, M., El Feki, A., Bouaziz, M. 2019. Chemical composition and antioxidant activity of Borago officinalis L. leaf extract growing in Algeria. Arabian Journal of Chemistry, 12(8): 1954-1963.
  • Zhou, Y., Lam, H.M., Zhang, J. 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. Journal of Experimental Botany, 58(5): 1207–1217.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Hülya Torun 0000-0002-1118-5130

Engin Eroğlu 0000-0002-1777-8375

Yayımlanma Tarihi 24 Ekim 2021
Gönderilme Tarihi 8 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 4

Kaynak Göster

APA Torun, H., & Eroğlu, E. (2021). Antioxidant Defense System in Borago officinalis L. under Drought Stress. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(4), 1048-1055. https://doi.org/10.30910/turkjans.949626