Research Article
BibTex RIS Cite

Determination of the Effects of Gradual Canopy Management Applications on Grapevine Microclimate in Yalova Incisi (Vitis vinifera L.) Grape Variety

Year 2023, Volume: 10 Issue: 3, 591 - 597, 23.07.2023
https://doi.org/10.30910/turkjans.1262425

Abstract

This research was carried out in the ‘Table Grape Varieties Application and Research Vineyard’ in the ‘Plant Production Research and Application Unit of COMU Dardanos Campus, Faculty of Agriculture’, in 2019 and 2021. In the research, it was aimed to determination of the effects of gradual canopy management applications on grapevine microclimate in 'Yalova İncisi' grape variety. The first situations of grapevine before the canopy management applications constituted the control (CNT) application. After that, gradual canopy management applications on the same grapevines were carried out at the EL–17 phenological stage. In this context; removal of water sprouts (RWS), removal of lower bottom leaves and lower axillary shoots (RLBL+RLAS) and removal of upper axillary shoots and topping (RUAS+TP) were performed on the same grapevines, respectively. Temperature (°C), relative humidity (%), amount of light (Lux) and wind speed (m sec–1) parameters were investigated in terms of the effects of gradual canopy management applications on the microclimate inside and outside the canopy of the grapevine. All applications and measurements were carried out between 11:00 and 15:00 of the day. According to the two–year research findings; in terms of temperature values, no significant difference was detected between the applications inside and outside the canopy, but numerical increases were determined from control to gradual canopy management. In terms of relative humidity values, no significant difference was detected inside and outside the canopy, but regular numerical decreases were recorded from control to gradual canopy management. While no significant difference could be detected between the applications outside the canopy in terms of the amount of light, the application of RUAS+TP (7541 Lux) reached the highest amount of light inside the canopy. With the gradual implementation of canopy management practices in grapevines, significant regular increases in the amount of light inside the canopy have occurred. The lowest wind speed in the canopy was determined in CNT (1.39 m sec–1), the highest wind speed was determined in RUAS+TP (1.89 m sec–1) and RLBL+RLAS (1.83 m sec–1) applications, respectively. The effects of canopy management practices according to the gradual were also reflected numerically on the microclimate outside the canopy.

References

  • Anić, M., Osrečak, M., Andabaka, Ž., Tomaz, I., Večenaj, Ž., Jelić, D., Kozina, B., Kontić J.K. ve Karoglan, M., 2021. The effect of leaf removal on canopy microclimate, vine performance and grape phenolic composition of Merlot (Vitis vinifera L.) grapes in the continental part of Croatia. Scientia Horticulturae, 285: 110161.
  • Blancquaert, E.H., Oberholster, A., Ricardo–da–Silva, J.M. ve Deloire, A.J., 2019. Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Frontiers in Plant Science, 10: 1062.
  • Bogicevic, M., Maras, V., Mugoša, M., Kodžulović, V., Raičević, J., Šućur, S. ve Failla, O., 2015. The effects of early leaf removal and cluster thinning treatments on berry growth and grape composition in cultivars Vranac and Cabernet Sauvignon. Chem. Biol. Technol. Agric., 2 (1): 1–8.
  • Camargo, H., Salazar, M., Keller, M. ve Hoogenboom, G., 2019. Modeling the effect of temperature on bud dormancy of grapevines. Agricultural and Forest Meteorology, 280. 107782.
  • Candar, S., Korkutal, İ. ve Bahar, E., 2019. Effect of canopy microclimate on Merlot (Vitis vinifera L.) grape composition. Applied Ecology and Environmental Research, 17 (6): 15431–15446.
  • Ferrini, F., Mattii, G.B. ve Nicese, F.P., 1995. Effect of temperature on key physiological responses of grapevine leaf. Am. J. Enol. Vitic., 46: 375–379.
  • Fregoni, M., Biondi Santi, F. ve Pezzato, S., 2002. L’indice bioclimatico di qualità Fregoni applicato al Brunello di Montalcino. Informatore Agrario, 22: 53–54.
  • Friedel, M., Stoll, M., Patz, C. D., Will, F. ve Dietrich, H., 2015. Impact of light exposure on fruit composition of white'Riesling'grape berries (Vitis vinifera L.). Vitis–Journal of Grapevine Research, 54 (3): 107–116.
  • Gregan, S.M., Wargent, J.J., Liu, L., Shinkle, J., Hofmann, R., Winefield, C., Trought, M. ve Jordan, B., 2012. Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes. Australian Journal of Grape and Wine Research, 18: 227–238.
  • Haselgrove, L., Botting, D., van Heeswijck, R., Hoj, P.B., Dry, P.R., Ford, C. ve Iland, P.G., 2000. Canopy microclimate and berry composition: the effect of bunch exposure on the phenolic composition of Vitis vinifera L. cv. Shiraz grape berries. Australian Journal of Grape and Wine Research, 6: 141–149.
  • Jackson, D. ve Lombard, P., 1993. Environmental and management practices affecting grape composition and wine quality–a review. Am. J. Enol. Vitic., 44 (4): 409–430.
  • Keller, M., 2015. The Science of Grapevines. Anatomy and Physiology. Academic Press, San Diego. 542 pp.
  • Martínez–Lüscher, J., Brillante, L. ve Kurtural, S.K., 2019. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in Plant Science, 10 (10): 1–15.
  • Matese, A., Crisci, A., Di Gennaro, S.F., Primicerio, J., Tomasi, D., Marcuzzo, P. ve Guidoni, S., 2014. Spatial variability of meteorological conditions at different scales in viticulture. Agricultural and Forest Meteorology, 189: 159–167.
  • Molitor, D. ve Keller, M., 2016. Yield of Mu¨ller–Thurgau and Riesling grapevines is altered by meteorological conditions in the current and previous growing seasons. OENO One, 50 (4). 245–258.
  • Ozden, M., 2014. Antioxidant potential and secondary metabolite content of grape berries influenced by microclimate. Journal of Food, Agriculture & Environment, 12 (3&4): 338–344.
  • Pastore, C., Zenoni, S., Fasoli, M., Pezzotti, M., Torbielli, G.B. ve Filippetti, I., 2013. Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant. Biol., 13 (30): 1–16.
  • Peña Quiñones, A.J., Hoogenboom, G., Salazar Gutiérrez, M.R., Stöckle, C. ve Keller, M., 2020. Comparison of air temperature measured in a vineyard canopy and at a standard weather station. Plos One, 15 (6): 1–20.
  • Schultz, H.R., 1992. An empirical model for the simulation of leaf appearance and leaf area development of primary shoots of several grapevine (Vitis vinifera L.) canopy–systems. Scientia Horticulturae, 52 (3): 179–200.
  • Song, J.Q., Smart, R., Wang, H., Dambergs, B., Sparrow, A. ve Qian, M.C., 2015. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chemistry, 173: 424–431.
  • Spayd, S.E., Tarara, J.M., Mee, D.L. ve Ferguson, J.C., 2002. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot Berries. Am. J. Enol. Vitic., 53 (3): 171–182.
  • Torres, N., Martínez–Lüscher, J. Porte, E. ve Kurtural, S.K., 2020. Optimal ranges and thresholds of grape berry solar radiation for flavonoid biosynthesis in warm climates. Frontiers in Plant Science, 11 (931): 1–15.
  • Torres, N., Martínez–Lüscher, J., Porte, E., Yu, R. ve Kurtural, S.K., 2021. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chemistry, 343: 128447.
  • Wang, X., De Bei, R., Fuentes, S. ve Collins, C., 2019. Influence of canopy management practices on canopy architecture and reproductive performance of Semillon and Shiraz grapevines in a hot climate. Am. J. Enol. Vitic., 70 (4): 360–372.

Yalova İncisi (Vitis vinifera L.) Üzüm Çeşidinde Kademeli Taç Yönetimi Uygulamalarının Omca Mikroklimasına Etkilerinin Belirlenmesi

Year 2023, Volume: 10 Issue: 3, 591 - 597, 23.07.2023
https://doi.org/10.30910/turkjans.1262425

Abstract

Bu araştırma, ‘ÇOMÜ Dardanos Yerleşkesi Ziraat Fakültesi Bitkisel Üretim Araştırma ve Uygulama Birimi’nde yer alan ‘Sofralık Üzüm Çeşitleri Uygulama ve Araştırma Bağı’nda, 2019 ve 2021 yıllarında yürütülmüştür. Araştırmada, ‘Yalova İncisi’ üzüm çeşidinde kademeli taç yönetimi uygulamalarının omca mikroklimasına etkilerinin belirlenmesi amaçlanmıştır. Omcaların taç yönetimi uygulamalarından önceki ilk durumları kontrol (KNT) uygulamasını oluşturmuştur. Bunun ardından aynı omcalar üzerinde kademeli taç yönetimi uygulamaları EL–17 fenolojik evresinde gerçekleştirilmiştir. Bu kapsamda; aynı omcalarda sırasıyla obur sürgünlerin alınması (OSA), alt dip yapraklar ile alt koltukların alınması (ADYA+AKA) ve üst koltuklar ile sürgün uçlarının alınması (ÜKA+SUA) uygulamaları yapılmıştır. Kademeli taç yönetimi uygulamalarının omca taç içi ve taç dışı mikroklimasına etkileri bakımından sıcaklık (°C), oransal nem (%), ışık miktarı (Lux) ve rüzgâr hızı (m sn–1) parametreleri incelenmiştir. Bütün uygulama ve ölçümler günün 11:00–15:00 saatleri arasında gerçekleştirilmiştir. İki yıllık araştırma bulgularına göre; sıcaklık değerleri bakımından taç içi ve taç dışında uygulamalar arasında istatistiki olarak önemli bir farklılık tespit edilmemiş, ancak kontrolden taç yönetimi kademesine doğru rakamsal artışlar belirlenmiştir. Oransal nem değerleri açısından da taç içi ve taç dışında istatistiki olarak önemli bir farklılık saptanmamış, ancak kontrolden taç yönetimi kademesine doğru düzenli rakamsal azalışlar kaydedilmiştir. Işık miktarı bakımından taç dışında uygulamalar arasında istatistiki olarak önemli bir farklılık tespit edilemezken, taç içinde en yüksek ışık miktarına ulaşılan uygulama ÜKA+SUA (7541 Lux) uygulaması olmuştur. Omcalarda taç yönetimi uygulamalarının kademeli olarak gerçekleştirilmesiyle, taç içindeki ışık miktarında önemli düzenli artışlar meydana gelmiştir. Taç içindeki en düşük rüzgâr hızı KNT’de (1.39 m sn–1), en yüksek rüzgâr hızı sırasıyla ÜKA+SUA (1.89 m sn–1) ve ADYA+AKA (1.83 m sn–1) uygulamalarında belirlenmiş, taç yönetimi uygulamalarının kademesine göre etkileri taç dışı mikroklimasına da rakamsal olarak olumlu yönde yansımıştır.

References

  • Anić, M., Osrečak, M., Andabaka, Ž., Tomaz, I., Večenaj, Ž., Jelić, D., Kozina, B., Kontić J.K. ve Karoglan, M., 2021. The effect of leaf removal on canopy microclimate, vine performance and grape phenolic composition of Merlot (Vitis vinifera L.) grapes in the continental part of Croatia. Scientia Horticulturae, 285: 110161.
  • Blancquaert, E.H., Oberholster, A., Ricardo–da–Silva, J.M. ve Deloire, A.J., 2019. Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Frontiers in Plant Science, 10: 1062.
  • Bogicevic, M., Maras, V., Mugoša, M., Kodžulović, V., Raičević, J., Šućur, S. ve Failla, O., 2015. The effects of early leaf removal and cluster thinning treatments on berry growth and grape composition in cultivars Vranac and Cabernet Sauvignon. Chem. Biol. Technol. Agric., 2 (1): 1–8.
  • Camargo, H., Salazar, M., Keller, M. ve Hoogenboom, G., 2019. Modeling the effect of temperature on bud dormancy of grapevines. Agricultural and Forest Meteorology, 280. 107782.
  • Candar, S., Korkutal, İ. ve Bahar, E., 2019. Effect of canopy microclimate on Merlot (Vitis vinifera L.) grape composition. Applied Ecology and Environmental Research, 17 (6): 15431–15446.
  • Ferrini, F., Mattii, G.B. ve Nicese, F.P., 1995. Effect of temperature on key physiological responses of grapevine leaf. Am. J. Enol. Vitic., 46: 375–379.
  • Fregoni, M., Biondi Santi, F. ve Pezzato, S., 2002. L’indice bioclimatico di qualità Fregoni applicato al Brunello di Montalcino. Informatore Agrario, 22: 53–54.
  • Friedel, M., Stoll, M., Patz, C. D., Will, F. ve Dietrich, H., 2015. Impact of light exposure on fruit composition of white'Riesling'grape berries (Vitis vinifera L.). Vitis–Journal of Grapevine Research, 54 (3): 107–116.
  • Gregan, S.M., Wargent, J.J., Liu, L., Shinkle, J., Hofmann, R., Winefield, C., Trought, M. ve Jordan, B., 2012. Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon Blanc grapes. Australian Journal of Grape and Wine Research, 18: 227–238.
  • Haselgrove, L., Botting, D., van Heeswijck, R., Hoj, P.B., Dry, P.R., Ford, C. ve Iland, P.G., 2000. Canopy microclimate and berry composition: the effect of bunch exposure on the phenolic composition of Vitis vinifera L. cv. Shiraz grape berries. Australian Journal of Grape and Wine Research, 6: 141–149.
  • Jackson, D. ve Lombard, P., 1993. Environmental and management practices affecting grape composition and wine quality–a review. Am. J. Enol. Vitic., 44 (4): 409–430.
  • Keller, M., 2015. The Science of Grapevines. Anatomy and Physiology. Academic Press, San Diego. 542 pp.
  • Martínez–Lüscher, J., Brillante, L. ve Kurtural, S.K., 2019. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in Plant Science, 10 (10): 1–15.
  • Matese, A., Crisci, A., Di Gennaro, S.F., Primicerio, J., Tomasi, D., Marcuzzo, P. ve Guidoni, S., 2014. Spatial variability of meteorological conditions at different scales in viticulture. Agricultural and Forest Meteorology, 189: 159–167.
  • Molitor, D. ve Keller, M., 2016. Yield of Mu¨ller–Thurgau and Riesling grapevines is altered by meteorological conditions in the current and previous growing seasons. OENO One, 50 (4). 245–258.
  • Ozden, M., 2014. Antioxidant potential and secondary metabolite content of grape berries influenced by microclimate. Journal of Food, Agriculture & Environment, 12 (3&4): 338–344.
  • Pastore, C., Zenoni, S., Fasoli, M., Pezzotti, M., Torbielli, G.B. ve Filippetti, I., 2013. Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant. Biol., 13 (30): 1–16.
  • Peña Quiñones, A.J., Hoogenboom, G., Salazar Gutiérrez, M.R., Stöckle, C. ve Keller, M., 2020. Comparison of air temperature measured in a vineyard canopy and at a standard weather station. Plos One, 15 (6): 1–20.
  • Schultz, H.R., 1992. An empirical model for the simulation of leaf appearance and leaf area development of primary shoots of several grapevine (Vitis vinifera L.) canopy–systems. Scientia Horticulturae, 52 (3): 179–200.
  • Song, J.Q., Smart, R., Wang, H., Dambergs, B., Sparrow, A. ve Qian, M.C., 2015. Effect of grape bunch sunlight exposure and UV radiation on phenolics and volatile composition of Vitis vinifera L. cv. Pinot noir wine. Food Chemistry, 173: 424–431.
  • Spayd, S.E., Tarara, J.M., Mee, D.L. ve Ferguson, J.C., 2002. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot Berries. Am. J. Enol. Vitic., 53 (3): 171–182.
  • Torres, N., Martínez–Lüscher, J. Porte, E. ve Kurtural, S.K., 2020. Optimal ranges and thresholds of grape berry solar radiation for flavonoid biosynthesis in warm climates. Frontiers in Plant Science, 11 (931): 1–15.
  • Torres, N., Martínez–Lüscher, J., Porte, E., Yu, R. ve Kurtural, S.K., 2021. Impacts of leaf removal and shoot thinning on cumulative daily light intensity and thermal time and their cascading effects of grapevine (Vitis vinifera L.) berry and wine chemistry in warm climates. Food Chemistry, 343: 128447.
  • Wang, X., De Bei, R., Fuentes, S. ve Collins, C., 2019. Influence of canopy management practices on canopy architecture and reproductive performance of Semillon and Shiraz grapevines in a hot climate. Am. J. Enol. Vitic., 70 (4): 360–372.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Article
Authors

Esra Şahin 0000-0003-3850-3407

Alper Dardeniz 0000-0003-3480-662X

Harun Çoban 0000-0003-3449-2819

Çağlar Kaya 0000-0002-7054-3081

Early Pub Date July 24, 2023
Publication Date July 23, 2023
Submission Date March 9, 2023
Published in Issue Year 2023 Volume: 10 Issue: 3

Cite

APA Şahin, E., Dardeniz, A., Çoban, H., Kaya, Ç. (2023). Yalova İncisi (Vitis vinifera L.) Üzüm Çeşidinde Kademeli Taç Yönetimi Uygulamalarının Omca Mikroklimasına Etkilerinin Belirlenmesi. Turkish Journal of Agricultural and Natural Sciences, 10(3), 591-597. https://doi.org/10.30910/turkjans.1262425