Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Silver Nanoparticles with Aqueous Extract of Pimenta dioica and Investigation of Their Biological Activity

Yıl 2024, Cilt: 11 Sayı: 3, 815 - 824, 24.07.2024
https://doi.org/10.30910/turkjans.1454998

Öz

Nanoparticles can be synthesized using physical, chemical, and biological methods. The disadvantages associated with physical and chemical nanoparticle synthesis, such as high energy consumption, low yield, high costs, and environmental hazards, contradict the advantages of green synthesis. This approach uses algae, plants, and microorganisms, providing a cost-effective, simpler, and environmentally friendly method for the synthesis of nanoparticles. In this study, silver nanoparticles were synthesized by the green synthesis method using Pimenta dioica aqueous extract. Characterization of the synthesized nanoparticles was carried out by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), UV Visible Field Spectroscopy (UV-Vis), and Fourier Transform Infrared Spectroscopy (FT-IR) methods. The interaction of silver nanoparticles with DNA was examined by agarose gel electrophoresis method using pBR322 plasmid DNA. DNA cleavage activity results showed that silver nanoparticles cleaved DNA both hydrolytically and oxidatively. The antioxidant activity of silver nanoparticles was determined using DPPH●, ABTS●+, and CUPRAC methods. According to the results of antioxidant tests, it was determined that the synthesized silver nanoparticles have strong antioxidant activity.

Kaynakça

  • Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52 (26), 7970-7981.
  • Assefa, A. D., Keum, Y. S., Saini, R. K. 2018. A comprehensive study of polyphenols contents and antioxidant potential of 39 widely used spices and food condiments. Journal of Food Measurement and Characterization, 12, 1548-1555.
  • Banerjee, J. ve Narendhirakannan, R. T. 2011. Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Dig J Nanomater Biostruct, 6 (3), 961-968.
  • Bar, F. M. A., Habib, M. M. A., El-Senduny, F. F., Badria, F. A. 2021. Cytotoxic activity of silver nanoparticles prepared from Psidium guajava L. (Myrtaceae) and Lawsonia inermis L.(Lythraceae) extracts. Tropical Journal of Pharmaceutical Research, 20 (9), 1791-1799.
  • Begum, M. Y., Alhamhoom, Y., Roy, A. 2021. Study of antimicrobial and DNA cleavage property of biocompatible silver nanoparticles prepared by using Ficus carica L. Materials Research Innovations, 25 (3), 147-154.
  • Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181 (4617), 1199-1200. Brieger, K., Schiavone, S., Miller Jr, F. J., Krause, K. H. 2012. Reactive oxygen species: from health to disease. Swiss Medical Weekly, 142 (3334), w13659-w13659.
  • Butler, K. S., Peeler, D. J., Casey, B. J., Dair, B. J., Elespuru, R. K. 2015. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 30 (4), 577-591.
  • Dharmadasa, R. M., Abeysinghe, D. C., Dissanayake, D. M. N., Abeywardhane, K. W., Fernando, N. S. 2015. Leaf essential oil composition, antioxidant activity, total phenolic content and total flavonoid content of Pimenta dioica (L.) Merr (Myrtaceae): A superior quality spice grown in Sri Lanka. Universal Journal of Agricultural Research, 3 (2), 49-52.
  • Dima, C., Cotârlet, M., Alexe, P., Dima, S. 2014. Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innovative Food Science & Emerging Technologies, 22, 203-211.
  • Doyle, B. J., Lawal, T. O., Locklear, T. D., Hernandez, L., Perez, A. L., Patel, U., Mahady, G. B. 2018. Isolation and identification of three new chromones from the leaves of Pimenta dioica with cytotoxic, oestrogenic, and anti-oestrogenic effects. Pharmaceutical Biology, 56 (1), 235-244.
  • El Gizawy, H. A., Boshra, S. A., Mostafa, A., Mahmoud, S. H., Ismail, M. I., Alsfouk, A. A., Al-Karmalawy, A. A. 2021. Pimenta dioica (L.) Merr. bioactive constituents exert anti-SARS-CoV-2 and anti-inflammatory activities: molecular docking and dynamics, in vitro, and in vivo studies. Molecules, 26 (19), 5844.
  • Ghaffari-Moghaddam, M., Hadi-Dabanlou, R., Khajeh, M., Rakhshanipour, M., Shameli, K. 2014. Green synthesis of silver nanoparticles using plant extracts. Korean Journal of Chemical Engineering, 31, 548-557.
  • Gulbagca, F., Ozdemir, S., Gulcan, M., Sen, F. 2019. Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon, 5 (12). Hasan, S. 2015. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci, 2277, 2502.
  • Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry, 13 (10), 2638-2650.
  • Jarquín-Enríquez, L., Ibarra-Torres, P., Jiménez-Islas, H., Flores-Martínez, N. L. 2021. Pimenta dioica: a review on its composition, phytochemistry, and applications in food technology. International Food Research Journal, 28 (5).
  • Kharey, P., Dutta, S. B., Gorey, A., Manikandan, M., Kumari, A., Vasudevan, S., Gupta, S. 2020. Pimenta dioica mediated biosynthesis of gold nanoparticles and evaluation of its potential for theranostic applications. Chemistry Select, 5 (26), 7901-7908.
  • Kim, S. S., Oh, O. J., Min, H. Y., Park, E. J., Kim, Y., Park, H. J., Lee, S. K. 2003. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264. 7 cells. Life Sciences, 73 (3), 337-348.
  • Kumar, D., Kumar, P., Vikram, K., Singh, H. 2022. Fabrication and characterization of noble crystalline silver nanoparticles from Pimenta dioica leave extract and analysis of chemical constituents for larvicidal applications. Saudi Journal of Biological Sciences, 29 (2), 1134-1146.
  • Li, X., Xu, H., Chen, Z. S., Chen, G. 2011. Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 1-16.
  • Loizzo, M. R., Sicari, V., Tenuta, M. C., Leporini, M. R., Falco, T., Pellicanò, T. M., Tundis, R. 2016. Phytochemicals content, antioxidant and hypoglycaemic activities of commercial nutmeg mace (Myristica fragrans L.) and pimento (Pimenta dioica (L.) Merr.). International Journal of Food Science & Technology, 51 (9), 2057-2063.
  • Lorenzo-Leal, A. C., Palou, E., López-Malo, A. 2019. Evaluation of the efficiency of allspice, thyme and rosemary essential oils on two foodborne pathogens in in-vitro and on alfalfa seeds, and their effect on sensory characteristics of the sprouts. International Journal of Food Microbiology, 295, 19-24.
  • Marzouk, M. S., Moharram, F. A., Mohamed, M. A., Gamal-Eldeen, A. M., Aboutabl, E. A. 2007. Anticancer and antioxidant tannins from Pimenta dioica leaves. Zeitschrift für Naturforschung C, 62 (7-8), 526-536.
  • McNeil, S. E. 2005. Nanotechnology for the biologist. Journal of Leukocyte Biology, 78 (3), 585-594.
  • Morsy, N. F., Hammad, K. S. 2018. Volatile constituents, radical scavenging and cytotoxic activities of Mexican allspice (Pimenta dioica L. Merrill) berries essential oil. Journal of Essential Oil Bearing Plants, 21 (4), 859-868.
  • Mousavi-Khattat, M., Keyhanfar, M., Razmjou, A. 2018. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artificial cells, nanomedicine, and biotechnology, 46 (sup3), 1022-1031.
  • Murali, V. S., Devi, V. M., Parvathy, P., Murugan, M. 2021. Phytochemical screening, FTIR spectral analysis, antioxidant and antibacterial activity of leaf extract of Pimenta dioica Linn. Materials Today: Proceedings, 45, 2166-2170.
  • Nayak, Y., Abhilash, D., Vijaynarayana, K., Fernandes, J. 2008. Antioxidant and hepatoprotective activity of Pimenta dioica leaves extract. Journal of Cell and Tissue Research, 8 (3), 1571.
  • Ozougwu, J. C. 2016. The role of reactive oxygen species and antioxidants in oxidative stress. International Journal of Research, 1 (8), 1-8.
  • Padmakumari, K. P., Sasidharan, I., Sreekumar, M. M. 2011. Composition and antioxidant activity of essential oil of pimento (Pimenta dioica (L) Merr.) from Jamaica. Natural Product Research, 25 (2), 152-160.
  • Pillai, R. R., Sreelekshmi, P. B., Meera, A. P. 2022a. Enhanced biological performance of green synthesized copper oxide nanoparticles using Pimenta dioica leaf extract. Materials Today: Proceedings, 50, 163-172.
  • Pillai, R. R., Sreelekshmi, P. B., Meera, A. P., Thomas, S. 2022b. Biosynthesized iron oxide nanoparticles: cytotoxic evaluation against human colorectal cancer cell lines. Materials Today: Proceedings, 50, 187-195.
  • Poinern, G. E. J., Chapman, P., Shah, M., Fawcett, D. 2013. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bulletin, 2 (1).
  • Popescu, M., Velea, A.,Lőrinczi, A. 2010. Biogenic production of nanoparticles. Digest Journal of Nanomaterials & Biostructures (DJNB), 5 (4).
  • Rajalekshmy, V. S., Manimekalai, V. 2019. Comparative phytochemical analysis of the leaves of two Myrtaceae members-Pimenta dioica (L.) Merril and Syzygium aromaticum (L.) Merril and Perry. Journal of Pharmacognosy and Phytochemistry, 8 (3), 3043-3045.
  • Rao, P. S., Navinchandra, S., Jayaveera, K. N. 2012. An important spice, Pimenta dioica (Linn.) Merill: A review. International Current Pharmaceutical Journal, 1 (8), 221-225.
  • Ravichandran, S., Paluri, V., Kumar, G., Loganathan, K., Kokati Venkata, B. R. 2016. A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential. Journal of Experimental Nanoscience, 11 (6), 445-458.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26 (9-10), 1231-1237.
  • Resha Haneefa, K., Nafila, P. P., Servin Wesley, P., Akhila, P. K. 2022. Phytochemical Analysis of Leaf Extracts of Pimenta dioica (L.) and their in vitro Antioxidant and Cytotoxic Activity. Research Journal of Biotechnology, 17, 8.
  • Sánchez-Zarate, A., Hernández-Gallegos, M. A., Carrera-Lanestosa, A., López-Martínez, S., Chay-Canul, A. J., Esparza-Rivera, J. R., Velázquez-Martínez, J. R. 2020. Antioxidant and antibacterial activity of aqueous, ethanolic, and acetonic extracts of Pimenta dioica L. leaves. International Food Research Journal, 27 (5).
  • Suárez, A., Ulate, G., Ciccio, J. 1997. Cardiovascular effects of ethanolic and aqueous extracts of Pimenta dioica in Sprague-Dawley rats. Journal of Ethnopharmacology, 55 (2), 107-111.
  • Wilson, L. 2016. Spices and flavoring crops: fruits and seeds.
  • Zabka, M., Pavela, R., Slezakova, L. 2009. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Industrial Crops and Products, 30 (2), 250-253.
  • Zhang, L., L Lokeshwar, B. 2012. Medicinal properties of the Jamaican pepper plant Pimenta dioica and Allspice. Current Drug Targets, 13 (14), 1900-1906.

Pimenta dioica Sulu Ekstraktı ile Gümüş Nanopartikülü Sentezi ve Biyolojik Aktivitelerinin Araştırılması

Yıl 2024, Cilt: 11 Sayı: 3, 815 - 824, 24.07.2024
https://doi.org/10.30910/turkjans.1454998

Öz

Nanopartiküller fiziksel, kimyasal ve biyolojik yöntemler kullanılarak sentezlenebilmektedir. Nanopartikül sentezi için fiziksel ve kimyasal yöntemlerle ilgili yüksek enerji tüketimi, düşük verim, yüksek maliyetler ve çevresel tehlikeler gibi dezavantajlar, yeşil sentezin sunduğu avantajlarla çelişmektedir. Bu yaklaşım, nanopartiküllerin sentezi için uygun maliyetli, daha basit ve çevre dostu bir yöntem sağlayarak algleri, bitkileri, mikroorganizmaları kullanmaktadır. Bu çalışmada, Pimenta dioica su ekstraktı kullanılarak yeşil sentez yöntemi ile gümüş nanopartikül sentezlenmiş ve sentezlenen nanopartiküllerin karakterizasyonları Taramalı Elektron Mikroskobu (SEM), Enerji Dağılım Spektroskopisi (EDS), UV Görünür Alan Spektroskopisi (UV-Vis) ve Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) yöntemleri ile gerçekleştirilmiştir. pBR322 plazmid DNA'sı kullanılarak agaroz jel elektroforezi yöntemi ile gümüş nanopartiküllerinin DNA ile etkileşimi incelenmiştir. DNA kırma aktivitesi sonuçlarına göre gümüş nanopartiküllerinin hem hidrolitik hem de oksidatif olarak kırdığı tespit edilmiştir. Gümüş nanopartiküllerinin antioksidan aktivitesi, DPPH●, ABTS●+ ve CUPRAC metotları kullanılarak belirlenmiştir. Antioksidan testlerinin sonuçları sentezlenen gümüş nanopartiküllerinin güçlü antioksidan aktiviteye sahip olduğunu göstermiştir.

Teşekkür

Bu çalışmanın karakterizasyon analizlerine katkılarından dolayı Kastamonu Üniversitesi Merkezi Araştırma Laboratuvarı Uygulama ve Araştırma Merkezi (MERLAB)’a ve Prof. Dr. Mustafa YILDIZ’a teşekkür ederiz.

Kaynakça

  • Apak, R., Güçlü, K., Özyürek, M., Karademir, S. E. 2004. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52 (26), 7970-7981.
  • Assefa, A. D., Keum, Y. S., Saini, R. K. 2018. A comprehensive study of polyphenols contents and antioxidant potential of 39 widely used spices and food condiments. Journal of Food Measurement and Characterization, 12, 1548-1555.
  • Banerjee, J. ve Narendhirakannan, R. T. 2011. Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities. Dig J Nanomater Biostruct, 6 (3), 961-968.
  • Bar, F. M. A., Habib, M. M. A., El-Senduny, F. F., Badria, F. A. 2021. Cytotoxic activity of silver nanoparticles prepared from Psidium guajava L. (Myrtaceae) and Lawsonia inermis L.(Lythraceae) extracts. Tropical Journal of Pharmaceutical Research, 20 (9), 1791-1799.
  • Begum, M. Y., Alhamhoom, Y., Roy, A. 2021. Study of antimicrobial and DNA cleavage property of biocompatible silver nanoparticles prepared by using Ficus carica L. Materials Research Innovations, 25 (3), 147-154.
  • Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature, 181 (4617), 1199-1200. Brieger, K., Schiavone, S., Miller Jr, F. J., Krause, K. H. 2012. Reactive oxygen species: from health to disease. Swiss Medical Weekly, 142 (3334), w13659-w13659.
  • Butler, K. S., Peeler, D. J., Casey, B. J., Dair, B. J., Elespuru, R. K. 2015. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 30 (4), 577-591.
  • Dharmadasa, R. M., Abeysinghe, D. C., Dissanayake, D. M. N., Abeywardhane, K. W., Fernando, N. S. 2015. Leaf essential oil composition, antioxidant activity, total phenolic content and total flavonoid content of Pimenta dioica (L.) Merr (Myrtaceae): A superior quality spice grown in Sri Lanka. Universal Journal of Agricultural Research, 3 (2), 49-52.
  • Dima, C., Cotârlet, M., Alexe, P., Dima, S. 2014. Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innovative Food Science & Emerging Technologies, 22, 203-211.
  • Doyle, B. J., Lawal, T. O., Locklear, T. D., Hernandez, L., Perez, A. L., Patel, U., Mahady, G. B. 2018. Isolation and identification of three new chromones from the leaves of Pimenta dioica with cytotoxic, oestrogenic, and anti-oestrogenic effects. Pharmaceutical Biology, 56 (1), 235-244.
  • El Gizawy, H. A., Boshra, S. A., Mostafa, A., Mahmoud, S. H., Ismail, M. I., Alsfouk, A. A., Al-Karmalawy, A. A. 2021. Pimenta dioica (L.) Merr. bioactive constituents exert anti-SARS-CoV-2 and anti-inflammatory activities: molecular docking and dynamics, in vitro, and in vivo studies. Molecules, 26 (19), 5844.
  • Ghaffari-Moghaddam, M., Hadi-Dabanlou, R., Khajeh, M., Rakhshanipour, M., Shameli, K. 2014. Green synthesis of silver nanoparticles using plant extracts. Korean Journal of Chemical Engineering, 31, 548-557.
  • Gulbagca, F., Ozdemir, S., Gulcan, M., Sen, F. 2019. Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon, 5 (12). Hasan, S. 2015. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci, 2277, 2502.
  • Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry, 13 (10), 2638-2650.
  • Jarquín-Enríquez, L., Ibarra-Torres, P., Jiménez-Islas, H., Flores-Martínez, N. L. 2021. Pimenta dioica: a review on its composition, phytochemistry, and applications in food technology. International Food Research Journal, 28 (5).
  • Kharey, P., Dutta, S. B., Gorey, A., Manikandan, M., Kumari, A., Vasudevan, S., Gupta, S. 2020. Pimenta dioica mediated biosynthesis of gold nanoparticles and evaluation of its potential for theranostic applications. Chemistry Select, 5 (26), 7901-7908.
  • Kim, S. S., Oh, O. J., Min, H. Y., Park, E. J., Kim, Y., Park, H. J., Lee, S. K. 2003. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264. 7 cells. Life Sciences, 73 (3), 337-348.
  • Kumar, D., Kumar, P., Vikram, K., Singh, H. 2022. Fabrication and characterization of noble crystalline silver nanoparticles from Pimenta dioica leave extract and analysis of chemical constituents for larvicidal applications. Saudi Journal of Biological Sciences, 29 (2), 1134-1146.
  • Li, X., Xu, H., Chen, Z. S., Chen, G. 2011. Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 1-16.
  • Loizzo, M. R., Sicari, V., Tenuta, M. C., Leporini, M. R., Falco, T., Pellicanò, T. M., Tundis, R. 2016. Phytochemicals content, antioxidant and hypoglycaemic activities of commercial nutmeg mace (Myristica fragrans L.) and pimento (Pimenta dioica (L.) Merr.). International Journal of Food Science & Technology, 51 (9), 2057-2063.
  • Lorenzo-Leal, A. C., Palou, E., López-Malo, A. 2019. Evaluation of the efficiency of allspice, thyme and rosemary essential oils on two foodborne pathogens in in-vitro and on alfalfa seeds, and their effect on sensory characteristics of the sprouts. International Journal of Food Microbiology, 295, 19-24.
  • Marzouk, M. S., Moharram, F. A., Mohamed, M. A., Gamal-Eldeen, A. M., Aboutabl, E. A. 2007. Anticancer and antioxidant tannins from Pimenta dioica leaves. Zeitschrift für Naturforschung C, 62 (7-8), 526-536.
  • McNeil, S. E. 2005. Nanotechnology for the biologist. Journal of Leukocyte Biology, 78 (3), 585-594.
  • Morsy, N. F., Hammad, K. S. 2018. Volatile constituents, radical scavenging and cytotoxic activities of Mexican allspice (Pimenta dioica L. Merrill) berries essential oil. Journal of Essential Oil Bearing Plants, 21 (4), 859-868.
  • Mousavi-Khattat, M., Keyhanfar, M., Razmjou, A. 2018. A comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artificial cells, nanomedicine, and biotechnology, 46 (sup3), 1022-1031.
  • Murali, V. S., Devi, V. M., Parvathy, P., Murugan, M. 2021. Phytochemical screening, FTIR spectral analysis, antioxidant and antibacterial activity of leaf extract of Pimenta dioica Linn. Materials Today: Proceedings, 45, 2166-2170.
  • Nayak, Y., Abhilash, D., Vijaynarayana, K., Fernandes, J. 2008. Antioxidant and hepatoprotective activity of Pimenta dioica leaves extract. Journal of Cell and Tissue Research, 8 (3), 1571.
  • Ozougwu, J. C. 2016. The role of reactive oxygen species and antioxidants in oxidative stress. International Journal of Research, 1 (8), 1-8.
  • Padmakumari, K. P., Sasidharan, I., Sreekumar, M. M. 2011. Composition and antioxidant activity of essential oil of pimento (Pimenta dioica (L) Merr.) from Jamaica. Natural Product Research, 25 (2), 152-160.
  • Pillai, R. R., Sreelekshmi, P. B., Meera, A. P. 2022a. Enhanced biological performance of green synthesized copper oxide nanoparticles using Pimenta dioica leaf extract. Materials Today: Proceedings, 50, 163-172.
  • Pillai, R. R., Sreelekshmi, P. B., Meera, A. P., Thomas, S. 2022b. Biosynthesized iron oxide nanoparticles: cytotoxic evaluation against human colorectal cancer cell lines. Materials Today: Proceedings, 50, 187-195.
  • Poinern, G. E. J., Chapman, P., Shah, M., Fawcett, D. 2013. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bulletin, 2 (1).
  • Popescu, M., Velea, A.,Lőrinczi, A. 2010. Biogenic production of nanoparticles. Digest Journal of Nanomaterials & Biostructures (DJNB), 5 (4).
  • Rajalekshmy, V. S., Manimekalai, V. 2019. Comparative phytochemical analysis of the leaves of two Myrtaceae members-Pimenta dioica (L.) Merril and Syzygium aromaticum (L.) Merril and Perry. Journal of Pharmacognosy and Phytochemistry, 8 (3), 3043-3045.
  • Rao, P. S., Navinchandra, S., Jayaveera, K. N. 2012. An important spice, Pimenta dioica (Linn.) Merill: A review. International Current Pharmaceutical Journal, 1 (8), 221-225.
  • Ravichandran, S., Paluri, V., Kumar, G., Loganathan, K., Kokati Venkata, B. R. 2016. A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential. Journal of Experimental Nanoscience, 11 (6), 445-458.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26 (9-10), 1231-1237.
  • Resha Haneefa, K., Nafila, P. P., Servin Wesley, P., Akhila, P. K. 2022. Phytochemical Analysis of Leaf Extracts of Pimenta dioica (L.) and their in vitro Antioxidant and Cytotoxic Activity. Research Journal of Biotechnology, 17, 8.
  • Sánchez-Zarate, A., Hernández-Gallegos, M. A., Carrera-Lanestosa, A., López-Martínez, S., Chay-Canul, A. J., Esparza-Rivera, J. R., Velázquez-Martínez, J. R. 2020. Antioxidant and antibacterial activity of aqueous, ethanolic, and acetonic extracts of Pimenta dioica L. leaves. International Food Research Journal, 27 (5).
  • Suárez, A., Ulate, G., Ciccio, J. 1997. Cardiovascular effects of ethanolic and aqueous extracts of Pimenta dioica in Sprague-Dawley rats. Journal of Ethnopharmacology, 55 (2), 107-111.
  • Wilson, L. 2016. Spices and flavoring crops: fruits and seeds.
  • Zabka, M., Pavela, R., Slezakova, L. 2009. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Industrial Crops and Products, 30 (2), 250-253.
  • Zhang, L., L Lokeshwar, B. 2012. Medicinal properties of the Jamaican pepper plant Pimenta dioica and Allspice. Current Drug Targets, 13 (14), 1900-1906.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Biyoteknolojisi
Bölüm Araştırma Makalesi
Yazarlar

İrem Akyol 0009-0005-7295-1555

Merve Duman 0000-0002-1178-5806

Neslihan Demir 0000-0002-2347-8344

Yayımlanma Tarihi 24 Temmuz 2024
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 23 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 3

Kaynak Göster

APA Akyol, İ., Duman, M., & Demir, N. (2024). Pimenta dioica Sulu Ekstraktı ile Gümüş Nanopartikülü Sentezi ve Biyolojik Aktivitelerinin Araştırılması. Türk Tarım Ve Doğa Bilimleri Dergisi, 11(3), 815-824. https://doi.org/10.30910/turkjans.1454998