Araştırma Makalesi
BibTex RIS Kaynak Göster

Mitigating Salinity Stress in Cotton (Gossypium hirsutum L.) with K-humate and Iron Oxide Nanoparticles

Yıl 2024, Cilt: 11 Sayı: 4, 1275 - 1283, 12.10.2024
https://doi.org/10.30910/turkjans.1511172

Öz

Tuzluluk stresi, bitki büyümesi ve gelişimi için büyük bir zorluk oluşturur; ozmotik stres, iyon toksisitesi ve besin dengesizlikleri gibi sorunlara ve sorunlar fotosentezin azalmasına ve bitkilerin erken yaşlanmasına neden olur. Bu çalışmada, potasyum humat (Kh) ve demir oksit nanopartiküllerinin (Fe (II,III) oksit pamuk bitkilerinin (Gossypium hirsitum L.) tuzlu koşullarla başa çıkmasına yardımcı olma potansiyelini araştırıldı. Bitki boyu, yaprak sayısı, yaprak ve köklerin taze ve kuru ağırlıkları, yaprak alanı, klorofil içeriği (SPAD değerleri) ve bağıl su içeriği (RWC) gibi çeşitli büyüme parametreler incelendi. Bulgular tuzluluk stresinin bitki boyunu, yaprak sayısını, taze yaprak ağırlığını, kuru yaprak ağırlığını, yaprak alanını ve RWC'yi önemli ölçüde azalttığını gösterdi. Ancak Fe (II,III) oksit'lerin ve Kh'nin uygulanması bu olumsuz etkilerin azaltılmasına yardımcı oldu. Özellikle Fe (II,III) oxide-NP'ler ve Kh kombinasyonu, tuzlu koşullar altında en yüksek bitki boyu saptandı. Tek başına Kh, stres altında bile yaprak sayısını ve taze yaprak ağırlığını arttırmada özellikle etkiliydi. Sonuç olarak, hem Fe (II,III) oxide'lerin hem de Kh'nin, pamuk bitkisinin tuzluluk stresine karşı direncini arttırmada etkili olduğu kanıtlandı ve bunların tuzlu ve kurak bölgelerde sürdürülebilir tarımda potansiyel kullanımlarının altı çizildi. Bu bilgiler, zorlu çevresel koşullar altında bitki büyümesini ve verimini artırmaya yönelik stratejiler geliştirmeye yardımcı olabilir.

Kaynakça

  • Angon, P. B., Tahjib-Ul-Arif, M., Samin, S. I., Habiba, U., Hossain, M. A., & Brestic, M. (2022). How Do Plants Respond to Combined Drought and Salinity Stress?-A Systematic Review. Plants (Basel, Switzerland), 11(21), 2884-2884.
  • Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Kesmala, T., Nageswara Rao, R. C., & Patanothai, A. (2008). Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science, 194(2), 113-125.
  • Azim, Z., Singh, N. B., Khare, S., Singh, A., Amist, N., & Yadav, R. K. (2022). Green synthesis of zinc oxide nanoparticles using Vernonia cinerea leaf extract and evaluation as nano-nutrient on the growth and development of tomato seedling. Plant Nano Biology, 2, 100011.
  • Badawy, N. M. T. E. S., Abd El-Aziz, N. G., Mazhar, A. M. A. E. H., & Mohamed, S. A. M. (2023). Role of algae in alleviated salinity effect on Jatropha curcas plants. GSC Biological and Pharmaceutical Sciences, 22(1), 351-364.
  • Badawy, R. A., Abbas, M. S., Abdel-Lattif, H. M., & Aly, A. M. (2020). Productivity of some faba bean cultivars and its pan bread characteristics as influenced by organic fertilizers under newly reclaimed salinity sandy soil. Journal of Plant Production, 11(12), 1251-1260.
  • Benito, P., Bellón, J., Porcel, R., Yenush, L., & Mulet, J. M. (2023). The biostimulant, potassium humate ameliorates abiotic stress in Arabidopsis thaliana by increasing starch availability. International Journal of Molecular Sciences, 24(15), 12140.
  • Doğru, A., & Canavar, S. (2020). Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform-Journal of Engineering and Science, 8(1), 155-174.
  • Etxeberria, E., Gonzalez, P., Baroja-Fernandez, E., & Romero, J. P. (2006). Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant signaling & behavior, 1(4), 196-200.
  • Francis, D. V., Sood, N., & Gokhale, T. (2022). Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus. Plants, 11(20), 2776.
  • Ghiabi, S., Sharafi, S., & Talebi, R. (2013). Morpho-physiological and biochemical alternation responses in different chickpea (Cicer arietinum L.) genotypes under two constructing water regimes.
  • Hacisalihoglu, G. (2020). Zinc (Zn): The last nutrient in the alphabet and shedding light on Zn efficiency for the future of crop production under suboptimal Zn. Plants, 9(11), 1471.
  • Hassan, M. U., Kareem, H. A., Hussain, S., Guo, Z., Niu, J., Roy, M., ... & Wang, Q. (2023). Enhanced salinity tolerance in Alfalfa through foliar nano-zinc oxide application: Mechanistic insights and potential agricultural applications. Rhizosphere, 28, 100792.
  • Horst, W. J., Wang, Y., & Eticha, D. (2010). The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Annals of botany, 106(1), 185-197.
  • İzci, B. (2009). Pamukta (G. hirsutum L.) farklı tuz konsantrasyonlarının in vitro koşullarda fotosentetik pigmentler üzerine etkisi. Alinteri Journal of Agriculture Science, 17(2), 7-13.
  • Jameel, S., Hameed, A., & Shah, T. M. (2021). Investigation of distinctive morpho-physio and biochemical alterations in desi chickpea at seedling stage under irrigation, heat, and combined stress. Frontiers in plant science, 12, 692745.
  • Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14(7), 2534-2571.
  • Khan, A., Khan, A. L., Muneer, S., Kim, Y. H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in plant science, 10, 1429.
  • Khorsandi, F., & Anagholi, A. (2009). Reproductive compensation of cotton after salt stress relief at different growth stages. Journal of Agronomy and Crop Science, 195(4), 278-283.
  • Kumar, V., Shriram, V., Nikam, T. D., Jawali, N., & Shitole, M. G. (2008). Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. Journal of Plant Nutrition, 31(11), 1999-2017.
  • Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharmaceutical Journal, 24(4), 473-484.
  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the total environment, 514, 131-139.
  • Lv, J., P. Christie, and S. Zhang, Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano, 2019. 6(1): p. 41–59.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250. Pask, AJD., Pietragalla, J., Mullan, DM. and Reynolds, MP. (Eds.) (2012) Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico, D.F. CIMMYT.
  • Patil, S., Prakash, G., & Lali, A. M. (2020). Reduced chlorophyll antenna mutants of Chlorella saccharophila for higher photosynthetic efficiency and biomass productivity under high light intensities. Journal of Applied Phycology, 32(3), 1559-1567.
  • Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical society reviews, 35(7), 583-592.
  • Simoes, P., Santos, M. A., Carromeu-Santos, A., Quina, A. S., Santos, M., & Matos, M. (2020). Beneficial developmental acclimation in reproductive performance under cold but not heat stress. Journal of Thermal Biology, 90, 102580.
  • Scheringer, M. (2008). Environmental risks of nanomaterials. Nature Nanotechnology, 3(6), 322-323.
  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental science & technology, 43(24), 9473-9479.
  • Thunugunta, T., Channa Reddy, A., Kodthalu Seetharamaiah, S., Ramanna Hunashikatti, L., Gowdra Chandrappa, S., Cherukatu Kalathil, N., & Dhoranapalli Chinnappa Reddy, L. R. (2018). Impact of zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. IET nanobiotechnology, 12(6), 706-713.
  • Toraman, P. Ş., Ergün, N., & Çalıcı, B. (2020). Some abiotic stress on growth and lipid peroxidation on wheat seedlings. Natural and Engineering Sciences, 5(3), 144-154.
  • Vessal, S., Arefian, M., & Siddique, K. H. (2020). Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings. BMC genomics, 21, 1-15.
  • Wang, F., Li, C., Cheng, J., & Yuan, Z. (2016). Recent advances on inorganic nanoparticle-based cancer therapeutic agents. International journal of environmental research and public health, 13(12), 1182.
  • Wang, X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials, 16(8), 3097.
  • Yang, W., Peters, J. I., & Williams III, R. O. (2008). Inhaled nanoparticles—a current review. International journal of pharmaceutics, 356(1-2), 239-247.
  • Zeitelhofer, M., Zhou, R., & Ottosen, C. O. (2022). Physiological responses of chickpea genotypes to cold and heat stress in flowering stage. Agronomy, 12(11), 2755.

Mitigating Salinity Stress in Cotton (Gossypium hirsutum L.) with K-humate and Iron Oxide Nanoparticles

Yıl 2024, Cilt: 11 Sayı: 4, 1275 - 1283, 12.10.2024
https://doi.org/10.30910/turkjans.1511172

Öz

Salinity stress poses a major challenge to plant growth and development, causing problems like osmotic stress, ion toxicity, and nutrient imbalances. These issues lead to reduced photosynthesis and early aging of plants. In this study, we explored the potential of potassium humate (Kh) and iron oxide nanoparticles (Fe (II,III) oxide-NPs) to help cotton plants (Gossypium hirsitum L.) cope with saline conditions. We examined various growth parameters such as plant height, leaf number, fresh and dry weights of leaves and roots, leaf area, chlorophyll content (SPAD values), and relative water content (RWC). Our findings showed that salinity stress significantly decreased plant height, leaf number, fresh leaf weight, dry leaf weight, leaf area, and RWC. However, the application of Fe (II,III) oxide-NPs and Kh helped mitigate these negative effects. Notably, the combination of Fe (II,III) oxide-NPs and Kh resulted in the highest plant height under saline conditions. Kh alone was particularly effective in increasing leaf number and fresh leaf weight, even under stress. In conclusion, both Fe (II,III) oxide NPs and Kh proved to be effective in enhancing cotton plant resilience to salinity stress, highlighting their potential use in sustainable agriculture in saline and arid regions. These insights can help develop strategies to improve plant growth and yield under challenging environmental conditions.

Kaynakça

  • Angon, P. B., Tahjib-Ul-Arif, M., Samin, S. I., Habiba, U., Hossain, M. A., & Brestic, M. (2022). How Do Plants Respond to Combined Drought and Salinity Stress?-A Systematic Review. Plants (Basel, Switzerland), 11(21), 2884-2884.
  • Arunyanark, A., Jogloy, S., Akkasaeng, C., Vorasoot, N., Kesmala, T., Nageswara Rao, R. C., & Patanothai, A. (2008). Chlorophyll stability is an indicator of drought tolerance in peanut. Journal of Agronomy and Crop Science, 194(2), 113-125.
  • Azim, Z., Singh, N. B., Khare, S., Singh, A., Amist, N., & Yadav, R. K. (2022). Green synthesis of zinc oxide nanoparticles using Vernonia cinerea leaf extract and evaluation as nano-nutrient on the growth and development of tomato seedling. Plant Nano Biology, 2, 100011.
  • Badawy, N. M. T. E. S., Abd El-Aziz, N. G., Mazhar, A. M. A. E. H., & Mohamed, S. A. M. (2023). Role of algae in alleviated salinity effect on Jatropha curcas plants. GSC Biological and Pharmaceutical Sciences, 22(1), 351-364.
  • Badawy, R. A., Abbas, M. S., Abdel-Lattif, H. M., & Aly, A. M. (2020). Productivity of some faba bean cultivars and its pan bread characteristics as influenced by organic fertilizers under newly reclaimed salinity sandy soil. Journal of Plant Production, 11(12), 1251-1260.
  • Benito, P., Bellón, J., Porcel, R., Yenush, L., & Mulet, J. M. (2023). The biostimulant, potassium humate ameliorates abiotic stress in Arabidopsis thaliana by increasing starch availability. International Journal of Molecular Sciences, 24(15), 12140.
  • Doğru, A., & Canavar, S. (2020). Bitkilerde tuz toleransının fizyolojik ve biyokimyasal bileşenleri. Academic Platform-Journal of Engineering and Science, 8(1), 155-174.
  • Etxeberria, E., Gonzalez, P., Baroja-Fernandez, E., & Romero, J. P. (2006). Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant signaling & behavior, 1(4), 196-200.
  • Francis, D. V., Sood, N., & Gokhale, T. (2022). Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus. Plants, 11(20), 2776.
  • Ghiabi, S., Sharafi, S., & Talebi, R. (2013). Morpho-physiological and biochemical alternation responses in different chickpea (Cicer arietinum L.) genotypes under two constructing water regimes.
  • Hacisalihoglu, G. (2020). Zinc (Zn): The last nutrient in the alphabet and shedding light on Zn efficiency for the future of crop production under suboptimal Zn. Plants, 9(11), 1471.
  • Hassan, M. U., Kareem, H. A., Hussain, S., Guo, Z., Niu, J., Roy, M., ... & Wang, Q. (2023). Enhanced salinity tolerance in Alfalfa through foliar nano-zinc oxide application: Mechanistic insights and potential agricultural applications. Rhizosphere, 28, 100792.
  • Horst, W. J., Wang, Y., & Eticha, D. (2010). The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Annals of botany, 106(1), 185-197.
  • İzci, B. (2009). Pamukta (G. hirsutum L.) farklı tuz konsantrasyonlarının in vitro koşullarda fotosentetik pigmentler üzerine etkisi. Alinteri Journal of Agriculture Science, 17(2), 7-13.
  • Jameel, S., Hameed, A., & Shah, T. M. (2021). Investigation of distinctive morpho-physio and biochemical alterations in desi chickpea at seedling stage under irrigation, heat, and combined stress. Frontiers in plant science, 12, 692745.
  • Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14(7), 2534-2571.
  • Khan, A., Khan, A. L., Muneer, S., Kim, Y. H., Al-Rawahi, A., & Al-Harrasi, A. (2019). Silicon and salinity: crosstalk in crop-mediated stress tolerance mechanisms. Frontiers in plant science, 10, 1429.
  • Khorsandi, F., & Anagholi, A. (2009). Reproductive compensation of cotton after salt stress relief at different growth stages. Journal of Agronomy and Crop Science, 195(4), 278-283.
  • Kumar, V., Shriram, V., Nikam, T. D., Jawali, N., & Shitole, M. G. (2008). Sodium chloride-induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. Journal of Plant Nutrition, 31(11), 1999-2017.
  • Kuppusamy, P., Yusoff, M. M., Maniam, G. P., & Govindan, N. (2016). Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharmaceutical Journal, 24(4), 473-484.
  • Liu, R., & Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the total environment, 514, 131-139.
  • Lv, J., P. Christie, and S. Zhang, Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science: Nano, 2019. 6(1): p. 41–59.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250. Pask, AJD., Pietragalla, J., Mullan, DM. and Reynolds, MP. (Eds.) (2012) Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico, D.F. CIMMYT.
  • Patil, S., Prakash, G., & Lali, A. M. (2020). Reduced chlorophyll antenna mutants of Chlorella saccharophila for higher photosynthetic efficiency and biomass productivity under high light intensities. Journal of Applied Phycology, 32(3), 1559-1567.
  • Roduner, E. (2006). Size matters: why nanomaterials are different. Chemical society reviews, 35(7), 583-592.
  • Simoes, P., Santos, M. A., Carromeu-Santos, A., Quina, A. S., Santos, M., & Matos, M. (2020). Beneficial developmental acclimation in reproductive performance under cold but not heat stress. Journal of Thermal Biology, 90, 102580.
  • Scheringer, M. (2008). Environmental risks of nanomaterials. Nature Nanotechnology, 3(6), 322-323.
  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental science & technology, 43(24), 9473-9479.
  • Thunugunta, T., Channa Reddy, A., Kodthalu Seetharamaiah, S., Ramanna Hunashikatti, L., Gowdra Chandrappa, S., Cherukatu Kalathil, N., & Dhoranapalli Chinnappa Reddy, L. R. (2018). Impact of zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. IET nanobiotechnology, 12(6), 706-713.
  • Toraman, P. Ş., Ergün, N., & Çalıcı, B. (2020). Some abiotic stress on growth and lipid peroxidation on wheat seedlings. Natural and Engineering Sciences, 5(3), 144-154.
  • Vessal, S., Arefian, M., & Siddique, K. H. (2020). Proteomic responses to progressive dehydration stress in leaves of chickpea seedlings. BMC genomics, 21, 1-15.
  • Wang, F., Li, C., Cheng, J., & Yuan, Z. (2016). Recent advances on inorganic nanoparticle-based cancer therapeutic agents. International journal of environmental research and public health, 13(12), 1182.
  • Wang, X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials, 16(8), 3097.
  • Yang, W., Peters, J. I., & Williams III, R. O. (2008). Inhaled nanoparticles—a current review. International journal of pharmaceutics, 356(1-2), 239-247.
  • Zeitelhofer, M., Zhou, R., & Ottosen, C. O. (2022). Physiological responses of chickpea genotypes to cold and heat stress in flowering stage. Agronomy, 12(11), 2755.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Fizyolojisi
Bölüm Araştırma Makalesi
Yazarlar

Hatice Kübra Gören 0000-0001-7654-1450

Öner Canavar 0000-0003-4168-953X

Uğur Tan 0000-0002-9592-2790

Erken Görünüm Tarihi 12 Ekim 2024
Yayımlanma Tarihi 12 Ekim 2024
Gönderilme Tarihi 5 Temmuz 2024
Kabul Tarihi 11 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 4

Kaynak Göster

APA Gören, H. K., Canavar, Ö., & Tan, U. (2024). Mitigating Salinity Stress in Cotton (Gossypium hirsutum L.) with K-humate and Iron Oxide Nanoparticles. Türk Tarım Ve Doğa Bilimleri Dergisi, 11(4), 1275-1283. https://doi.org/10.30910/turkjans.1511172