Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 1, 91 - 106, 30.06.2025
https://doi.org/10.51489/tuzal.1647078

Abstract

References

  • Al-Najjar, H. A. H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Mansor, S. (2019). Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sensing, 11(12). https://doi.org/10.3390/rs11121461
  • Asaro, F., Murdaca, G., & Prati, C. M. (2021, July 11-16). Learning deep models from weak labels for water surface segmentation in Sar images [Paper presentation]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium. https://doi.org/10.1109/IGARSS47720.2021.9554647
  • Atik, Ş. Ö. (2023). Object-Based Integration Using Deep Learning and Multi-Resolution Segmentation in Building Extraction from Very high resolution satellite imagery. Turkish Journal of Remote Sensing, 5(2), 67–77. https://doi.org/10.51489/tuzal.1337656
  • Bai, Y., Wu, W., Yang, Z., Yu, J., Zhao, B., Liu, X., Yang, H., Mas, E., & Koshimura, S. (2021). Enhancement of detecting permanent water and temporary water in flood disasters by fusing Sentinel-1 and Sentinel-2 imagery using deep learning algorithms: Demonstration of sen1floods11 benchmark datasets. Remote Sensing, 13(11). https://doi.org/10.3390/rs13112220
  • Barlas, N., Akbulut, N., & Aydoğan, M. (2005). Assessment of heavy metal residues in the sediment and water samples of Uluabat Lake, Turkey. Bulletin of Environmental Contamination and Toxicology, 74(2), 286–293. https://doi.org/10.1007/s00128-004-0582-y
  • Bioresita, F., Puissant, A., Stumpf, A., & Malet, J.-P. (2018). A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sensing, 10(2). https://doi.org/10.3390/rs10020217
  • Campos-Taberner, M., García-Haro, F. J., Martínez, B., Izquierdo-Verdiguier, E., Atzberger, C., Camps-Valls, G., & Gilabert, M. A. (2020). Understanding deep learning in land use classification based on Sentinel-2 time series. Scientific Reports, 10(1), 17188. https://doi.org/10.1038/s41598-020-74215-5
  • Dervisoglu, A. (2021). Analysis of the temporal changes of inland ramsar sites in Turkey using google earth engine. ISPRS International Journal of Geo-Information, 10(8). https://doi.org/10.3390/ijgi10080521
  • Digra, M., Dhir, R., & Sharma, N. (2022). Land use land cover classification of remote sensing images based on the deep learning approaches: a statistical analysis and review. Arabian Journal of Geosciences, 15(10), 1003. https://doi.org/10.1007/s12517-022-10246-8
  • Fayaz, M., Nam, J., Dang, L. M., Song, H.-K., & Moon, H. (2024). Land-cover classification using deep learning with high-resolution remote-sensing imagery. Applied Sciences, 14(5). https://doi.org/10.3390/app14051844
  • Filik Iscen, C., Emiroglu, Ö., Ilhan, S., Arslan, N., Yilmaz, V., & Ahiska, S. (2008). Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat lake, Turkey. Environmental Monitoring and Assessment, 144(1), 269–276. https://doi.org/10.1007/s10661-007-9989-3
  • Li, C., Ma, Z., Wang, L., Yu, W., Tan, D., Gao, B., Feng, Q., Guo, H., & Zhao, Y. (2021). Improving the accuracy of land cover mapping by distributing training samples. Remote Sensing, 13(22). https://doi.org/10.3390/rs13224594
  • Liong, S. Y., & Sivapragasam, C. (2002). Flood stage forecasting with support vector machines. Journal of the American Water Resources Association, 38(1), 173–186. https://doi.org/10.1111/j.1752-1688.2002.tb01544.x
  • Moumane, A., Bahouq, T., Karmaoui, A., Laghfiri, D., Yassine, M., Karkouri, J. Al, Batchi, M., Faouzi, M., Boulakhbar, M., & Youssef, A. A. (2025). Lake iriqui’s remarkable revival: Field observations and a google earth engine analysis of its recovery after over half a century of desiccation. Land, 14(1). https://doi.org/10.3390/land14010104
  • Pang, H., Wang, X., Hou, R., You, W., Bian, Z., & Sang, G. (2023). Multiwater index synergistic monitoring of typical wetland water bodies in the arid regions of west-central Ningxia over 30 years. Water, 15(1). https://doi.org/10.3390/w15010020
  • Pham-Duc, B., Prigent, C., & Aires, F. (2017). Surface Water Monitoring within Cambodia and the Vietnamese Mekong delta over a year, with Sentinel-1 SAR observations. Water, 9(6). https://doi.org/10.3390/w9060366
  • Priyanka, N, S., Lal, S., Nalini, J., Reddy, C. S., & Dell’Acqua, F. (2023). DPPNet: An efficient and robust deep learning network for land cover segmentation from high-resolution satellite images. IEEE Transactions on Emerging Topics in Computational Intelligence, 7(1), 128–139. https://doi.org/10.1109/TETCI.2022.3182414
  • Šćepanović, S., Antropov, O., Laurila, P., Rauste, Y., Ignatenko, V., & Praks, J. (2021). Wide-area land cover mapping with Sentinel-1 imagery using deep learning semantic segmentation models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10357–10374. https://doi.org/10.1109/JSTARS.2021.3116094
  • Shabbir, A., Ali, N., Ahmed, J., Zafar, B., Rasheed, A., Sajid, M., Ahmed, A., & Dar, S. H. (2021). Satellite and scene image classification based on transfer learning and fine tuning of resnet50. Mathematical Problems in Engineering, 2021(1), 5843816. https://doi.org/https://doi.org/10.1155/2021/5843816
  • Solórzano, J. V, Mas, J. F., Gao, Y., & Gallardo-Cruz, J. A. (2021). Land use land cover classification with U-Net: Advantages of combining Sentinel-1 and Sentinel-2 imagery. Remote Sensing, 13(18). https://doi.org/10.3390/rs13183600
  • Uzun, M. (2024). Analysis of Manyas lake surface area and shoreline change over various periods with DSAS tool. Turkish Journal of Remote Sensing, 6(1), 35–56. https://doi.org/10.51489/tuzal.1443490
  • Xie, Y., Zeng, H., Yang, K., Yuan, Q., & Yang, C. (2023). Water-body detection in Sentinel-1 SAR images with DK-CO network. Electronics, 12(14). https://doi.org/10.3390/electronics12143163
  • Yao, P., Fan, H., & Wu, Q. (2025). Optimal drought index selection for soil moisture monitoring at multiple depths in China’s agricultural regions. Agriculture, 15(4). https://doi.org/10.3390/agriculture15040423
  • Yilmaz, O. (2023). Monitoring water surfaces by remote sensing: The Case of Manyas Kusgolu, Ulubat, and Iznik lakes in Türkiye. International Research in Engineering Sciences, 52–66. https://doi.org/10.5281/zenodo.7744436
  • Zhang, W., Hu, B., & Brown, G. S. (2020). Automatic surface water mapping using polarimetric SAR data for long-term change detection. Water, 12(3). https://doi.org/10.3390/w12030872
  • Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). land use and land cover classification meets deep learning: A review. Sensors, 23(21). https://doi.org/10.3390/s23218966
  • Zhao, X., Zhang, J., Tian, J., Zhuo, L., & Zhang, J. (2020). Residual dense network based on channel-spatial attention for the scene classification of a high-resolution remote sensing image. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111887

Deep learning-based semantic segmentation for surface water extraction from Sentinel-2 imagery: Case study of Kuş and Uluabat lakes, Türkiye

Year 2025, Volume: 7 Issue: 1, 91 - 106, 30.06.2025
https://doi.org/10.51489/tuzal.1647078

Abstract

This study presents a deep learning-based approach for high-precision surface water extraction from Sentinel-2 multispectral imagery. A modified U-Net architecture, trained and evaluated on two Turkish lake systems (Kuş and Uluabat Lakes), achieved superior performance compared to traditional methods. The model attained an overall accuracy of 0.9980, precision of 0.9980, recall of 0.9980, F1-score of 0.9980, and Intersection over Union (IoU) of 0.9961, outperforming both Normalized Difference Water Index (NDWI) and Modified NDWI (MNDWI). Analysis reveals that the U-Net effectively mitigates spectral confusion in heterogeneous environments, demonstrating its potential for enhanced water resource monitoring, flood mapping, and hydrological modeling applications. While NDWI and MNDWI achieved IoU scores of 0.9956 and 0.9953, respectively, the deep learning model's higher IoU signifies more accurate boundary delineation. The improved performance highlights the value of deep learning in automated surface water mapping for enhanced decision-making in water resource management. These results suggest that while traditional spectral indices are useful for preliminary analysis, deep learning approaches offer a more refined classification, particularly in complex or heterogeneous landscapes.

References

  • Al-Najjar, H. A. H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., & Mansor, S. (2019). Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sensing, 11(12). https://doi.org/10.3390/rs11121461
  • Asaro, F., Murdaca, G., & Prati, C. M. (2021, July 11-16). Learning deep models from weak labels for water surface segmentation in Sar images [Paper presentation]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium. https://doi.org/10.1109/IGARSS47720.2021.9554647
  • Atik, Ş. Ö. (2023). Object-Based Integration Using Deep Learning and Multi-Resolution Segmentation in Building Extraction from Very high resolution satellite imagery. Turkish Journal of Remote Sensing, 5(2), 67–77. https://doi.org/10.51489/tuzal.1337656
  • Bai, Y., Wu, W., Yang, Z., Yu, J., Zhao, B., Liu, X., Yang, H., Mas, E., & Koshimura, S. (2021). Enhancement of detecting permanent water and temporary water in flood disasters by fusing Sentinel-1 and Sentinel-2 imagery using deep learning algorithms: Demonstration of sen1floods11 benchmark datasets. Remote Sensing, 13(11). https://doi.org/10.3390/rs13112220
  • Barlas, N., Akbulut, N., & Aydoğan, M. (2005). Assessment of heavy metal residues in the sediment and water samples of Uluabat Lake, Turkey. Bulletin of Environmental Contamination and Toxicology, 74(2), 286–293. https://doi.org/10.1007/s00128-004-0582-y
  • Bioresita, F., Puissant, A., Stumpf, A., & Malet, J.-P. (2018). A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sensing, 10(2). https://doi.org/10.3390/rs10020217
  • Campos-Taberner, M., García-Haro, F. J., Martínez, B., Izquierdo-Verdiguier, E., Atzberger, C., Camps-Valls, G., & Gilabert, M. A. (2020). Understanding deep learning in land use classification based on Sentinel-2 time series. Scientific Reports, 10(1), 17188. https://doi.org/10.1038/s41598-020-74215-5
  • Dervisoglu, A. (2021). Analysis of the temporal changes of inland ramsar sites in Turkey using google earth engine. ISPRS International Journal of Geo-Information, 10(8). https://doi.org/10.3390/ijgi10080521
  • Digra, M., Dhir, R., & Sharma, N. (2022). Land use land cover classification of remote sensing images based on the deep learning approaches: a statistical analysis and review. Arabian Journal of Geosciences, 15(10), 1003. https://doi.org/10.1007/s12517-022-10246-8
  • Fayaz, M., Nam, J., Dang, L. M., Song, H.-K., & Moon, H. (2024). Land-cover classification using deep learning with high-resolution remote-sensing imagery. Applied Sciences, 14(5). https://doi.org/10.3390/app14051844
  • Filik Iscen, C., Emiroglu, Ö., Ilhan, S., Arslan, N., Yilmaz, V., & Ahiska, S. (2008). Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat lake, Turkey. Environmental Monitoring and Assessment, 144(1), 269–276. https://doi.org/10.1007/s10661-007-9989-3
  • Li, C., Ma, Z., Wang, L., Yu, W., Tan, D., Gao, B., Feng, Q., Guo, H., & Zhao, Y. (2021). Improving the accuracy of land cover mapping by distributing training samples. Remote Sensing, 13(22). https://doi.org/10.3390/rs13224594
  • Liong, S. Y., & Sivapragasam, C. (2002). Flood stage forecasting with support vector machines. Journal of the American Water Resources Association, 38(1), 173–186. https://doi.org/10.1111/j.1752-1688.2002.tb01544.x
  • Moumane, A., Bahouq, T., Karmaoui, A., Laghfiri, D., Yassine, M., Karkouri, J. Al, Batchi, M., Faouzi, M., Boulakhbar, M., & Youssef, A. A. (2025). Lake iriqui’s remarkable revival: Field observations and a google earth engine analysis of its recovery after over half a century of desiccation. Land, 14(1). https://doi.org/10.3390/land14010104
  • Pang, H., Wang, X., Hou, R., You, W., Bian, Z., & Sang, G. (2023). Multiwater index synergistic monitoring of typical wetland water bodies in the arid regions of west-central Ningxia over 30 years. Water, 15(1). https://doi.org/10.3390/w15010020
  • Pham-Duc, B., Prigent, C., & Aires, F. (2017). Surface Water Monitoring within Cambodia and the Vietnamese Mekong delta over a year, with Sentinel-1 SAR observations. Water, 9(6). https://doi.org/10.3390/w9060366
  • Priyanka, N, S., Lal, S., Nalini, J., Reddy, C. S., & Dell’Acqua, F. (2023). DPPNet: An efficient and robust deep learning network for land cover segmentation from high-resolution satellite images. IEEE Transactions on Emerging Topics in Computational Intelligence, 7(1), 128–139. https://doi.org/10.1109/TETCI.2022.3182414
  • Šćepanović, S., Antropov, O., Laurila, P., Rauste, Y., Ignatenko, V., & Praks, J. (2021). Wide-area land cover mapping with Sentinel-1 imagery using deep learning semantic segmentation models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10357–10374. https://doi.org/10.1109/JSTARS.2021.3116094
  • Shabbir, A., Ali, N., Ahmed, J., Zafar, B., Rasheed, A., Sajid, M., Ahmed, A., & Dar, S. H. (2021). Satellite and scene image classification based on transfer learning and fine tuning of resnet50. Mathematical Problems in Engineering, 2021(1), 5843816. https://doi.org/https://doi.org/10.1155/2021/5843816
  • Solórzano, J. V, Mas, J. F., Gao, Y., & Gallardo-Cruz, J. A. (2021). Land use land cover classification with U-Net: Advantages of combining Sentinel-1 and Sentinel-2 imagery. Remote Sensing, 13(18). https://doi.org/10.3390/rs13183600
  • Uzun, M. (2024). Analysis of Manyas lake surface area and shoreline change over various periods with DSAS tool. Turkish Journal of Remote Sensing, 6(1), 35–56. https://doi.org/10.51489/tuzal.1443490
  • Xie, Y., Zeng, H., Yang, K., Yuan, Q., & Yang, C. (2023). Water-body detection in Sentinel-1 SAR images with DK-CO network. Electronics, 12(14). https://doi.org/10.3390/electronics12143163
  • Yao, P., Fan, H., & Wu, Q. (2025). Optimal drought index selection for soil moisture monitoring at multiple depths in China’s agricultural regions. Agriculture, 15(4). https://doi.org/10.3390/agriculture15040423
  • Yilmaz, O. (2023). Monitoring water surfaces by remote sensing: The Case of Manyas Kusgolu, Ulubat, and Iznik lakes in Türkiye. International Research in Engineering Sciences, 52–66. https://doi.org/10.5281/zenodo.7744436
  • Zhang, W., Hu, B., & Brown, G. S. (2020). Automatic surface water mapping using polarimetric SAR data for long-term change detection. Water, 12(3). https://doi.org/10.3390/w12030872
  • Zhao, S., Tu, K., Ye, S., Tang, H., Hu, Y., & Xie, C. (2023). land use and land cover classification meets deep learning: A review. Sensors, 23(21). https://doi.org/10.3390/s23218966
  • Zhao, X., Zhang, J., Tian, J., Zhuo, L., & Zhang, J. (2020). Residual dense network based on channel-spatial attention for the scene classification of a high-resolution remote sensing image. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111887
There are 27 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling, Remote Sensing
Journal Section Research Articles
Authors

Sohaib K M Abujayyab 0000-0002-6692-3567

Publication Date June 30, 2025
Submission Date February 26, 2025
Acceptance Date May 11, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

IEEE S. K. M. Abujayyab, “Deep learning-based semantic segmentation for surface water extraction from Sentinel-2 imagery: Case study of Kuş and Uluabat lakes, Türkiye”, TJRS, vol. 7, no. 1, pp. 91–106, 2025, doi: 10.51489/tuzal.1647078.

 SCImago Journal & Country Rank             Flag Counter