Research Article
BibTex RIS Cite

Stability Result for a Kirchhoff Beam Equation with Variable Exponent and Time Delay

Year 2022, , 1 - 9, 15.03.2022
https://doi.org/10.32323/ujma.1028304

Abstract

This paper is concerned with a stability result for a Kirchhoff beam equation with variable exponents and time
delay. The exponential and polynomial stability decay are proved based on Komornik's inequality.

References

  • [1] S. Antontsev, Wave equation with p(x; t)-Laplacian and damping term: blow-up of solutions, C. R. Mecanique, 339 (2011), 751-755.
  • [2] S. Antontsev, Wave equation with p(x; t)-Laplacian and damping term: existence and blow-up, Differential Equations Appl., 3 (2011), 503-525.
  • [3] S. Antontsev, J. Ferreira, E. Pis¸kin, Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponents nonlinearities, Electr. j. differ. equ., 2021(6) (2021), 1-18.
  • [4] S. Antontsev, J. Ferreira, E. Pis¸kin, S. M. Siqueira Cordeiro, Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Anal. Real World Appl., 61 (2021), Article ID 103341.
  • [5] A. Antontsev, J. Ferreira, E. Pis¸kin, H. Y¨uksekkaya, M. Shahrouzi, Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents, Electron. J. Differ. Equ., 2021(84), (2021), 1-20.
  • [6] J. M. Ball, Initial boundary value problem for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.
  • [7] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
  • [8] L. Diening, P. Hasto, P. Harjulehto, M. M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, 2011.
  • [9] X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spacesWk;p(x) (W) , J. Math. Anal. Appl., 263 (2001), 749-760.
  • [10] B. Feng, H. Li, Energy decay for a viscoelastic Kirchhoff plate equation with a delay term, Bound. Value Probl., 174 (2016), https://doi.org/10.1186/s13661-016-0682-8
  • [11] J. R. Kang, Global nonexistence of solutions for von Karman equations with variable exponents, Appl. Math. Lett., 86 (2018), 249-255.
  • [12] M. Kafini, S. A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math., 13 (2016), 237-247.
  • [13] G. Kirchhoff, Vorlesungen ¨uber mechanik, B. G. Teubner, Leipzig, 1897.
  • [14] O. Kovacik, J. Rakosnik, On spaces Lp(x) (W) ; andWk;p(x) (W) , Czech. Math. J., 41(116) (1991), 592-618.
  • [15] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson and Wiley, 1994.
  • [16] S. A. Messaoudi, M. Kafini, On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay, Ann. Pol. Math., 122 (2019), 49-70.
  • [17] J. Musielak, Orlicz spaces and modular spaces, Springer-Verlag, Berlin, 1983.
  • [18] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18, (1959) 49-65.
  • [19] H. Nakano, Modulared semi-ordered linear spaces, Maruzen Co., Tokyo, 1950.
  • [20] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.
  • [21] S. H. Park, J. R. Kang, Blow-up of solutions for a viscoelastic wave equation with variable exponents, Math. Meth. Appl. Sci., 42 (2019), 2083-2097.
  • [22] E. Pis¸kin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl., 11(1) (2020), 37-45.
  • [23] E. Pis¸kin, H. Yüksekkaya, Decay of solutions for a nonlinear Petrovsky equation with delay term and variable exponents, The Aligarh Bull. of Maths., 39(2) (2020), 63-78.
  • [24] H. Yüksekkaya, E. Pis¸kin, S.M. Boulaaras, B. B. Cherif, Existence, decay and blow-up of solutions for a higher-order kirchhoff-type equation with delay term, J. Funct. Spaces, 2021 (2021), Article ID 4414545
  • [25] H. Y¨uksekkaya, E. Pis¸kin, S. M. Boulaaras, B. B. Cherif, S. A. Zubair, Existence, nonexistence, and stability of solutions for a delayed plate equation with the logarithmic source, Adv. Math. Phys., 2021 (2021), 1-11.
  • [26] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, 2000.
  • [27] M. L. Santos, J. Ferreira, C. A. Raposo, Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with moving boundary, Abstr. Appl. Anal., 8 (2005), 901-919.
  • [28] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comput. Math. with Appl., 75(11) (2018), 3946-3956.
  • [29] M. Tucsnak, Semi-internal stabilization for a nonlinear Euler-Bernoulli equation, Math. Method. Appl. Sci., 19 (1996), 897-907.
  • [30] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.
Year 2022, , 1 - 9, 15.03.2022
https://doi.org/10.32323/ujma.1028304

Abstract

References

  • [1] S. Antontsev, Wave equation with p(x; t)-Laplacian and damping term: blow-up of solutions, C. R. Mecanique, 339 (2011), 751-755.
  • [2] S. Antontsev, Wave equation with p(x; t)-Laplacian and damping term: existence and blow-up, Differential Equations Appl., 3 (2011), 503-525.
  • [3] S. Antontsev, J. Ferreira, E. Pis¸kin, Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponents nonlinearities, Electr. j. differ. equ., 2021(6) (2021), 1-18.
  • [4] S. Antontsev, J. Ferreira, E. Pis¸kin, S. M. Siqueira Cordeiro, Existence and non-existence of solutions for Timoshenko-type equations with variable exponents, Nonlinear Anal. Real World Appl., 61 (2021), Article ID 103341.
  • [5] A. Antontsev, J. Ferreira, E. Pis¸kin, H. Y¨uksekkaya, M. Shahrouzi, Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents, Electron. J. Differ. Equ., 2021(84), (2021), 1-20.
  • [6] J. M. Ball, Initial boundary value problem for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.
  • [7] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
  • [8] L. Diening, P. Hasto, P. Harjulehto, M. M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, 2011.
  • [9] X. L. Fan, J. S. Shen, D. Zhao, Sobolev embedding theorems for spacesWk;p(x) (W) , J. Math. Anal. Appl., 263 (2001), 749-760.
  • [10] B. Feng, H. Li, Energy decay for a viscoelastic Kirchhoff plate equation with a delay term, Bound. Value Probl., 174 (2016), https://doi.org/10.1186/s13661-016-0682-8
  • [11] J. R. Kang, Global nonexistence of solutions for von Karman equations with variable exponents, Appl. Math. Lett., 86 (2018), 249-255.
  • [12] M. Kafini, S. A. Messaoudi, A blow-up result in a nonlinear wave equation with delay, Mediterr. J. Math., 13 (2016), 237-247.
  • [13] G. Kirchhoff, Vorlesungen ¨uber mechanik, B. G. Teubner, Leipzig, 1897.
  • [14] O. Kovacik, J. Rakosnik, On spaces Lp(x) (W) ; andWk;p(x) (W) , Czech. Math. J., 41(116) (1991), 592-618.
  • [15] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson and Wiley, 1994.
  • [16] S. A. Messaoudi, M. Kafini, On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay, Ann. Pol. Math., 122 (2019), 49-70.
  • [17] J. Musielak, Orlicz spaces and modular spaces, Springer-Verlag, Berlin, 1983.
  • [18] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18, (1959) 49-65.
  • [19] H. Nakano, Modulared semi-ordered linear spaces, Maruzen Co., Tokyo, 1950.
  • [20] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.
  • [21] S. H. Park, J. R. Kang, Blow-up of solutions for a viscoelastic wave equation with variable exponents, Math. Meth. Appl. Sci., 42 (2019), 2083-2097.
  • [22] E. Pis¸kin, Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents, Int. J. Nonlinear Anal. Appl., 11(1) (2020), 37-45.
  • [23] E. Pis¸kin, H. Yüksekkaya, Decay of solutions for a nonlinear Petrovsky equation with delay term and variable exponents, The Aligarh Bull. of Maths., 39(2) (2020), 63-78.
  • [24] H. Yüksekkaya, E. Pis¸kin, S.M. Boulaaras, B. B. Cherif, Existence, decay and blow-up of solutions for a higher-order kirchhoff-type equation with delay term, J. Funct. Spaces, 2021 (2021), Article ID 4414545
  • [25] H. Y¨uksekkaya, E. Pis¸kin, S. M. Boulaaras, B. B. Cherif, S. A. Zubair, Existence, nonexistence, and stability of solutions for a delayed plate equation with the logarithmic source, Adv. Math. Phys., 2021 (2021), 1-11.
  • [26] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, 2000.
  • [27] M. L. Santos, J. Ferreira, C. A. Raposo, Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with moving boundary, Abstr. Appl. Anal., 8 (2005), 901-919.
  • [28] M. Shahrouzi, On behaviour of solutions for a nonlinear viscoelastic equation with variable-exponent nonlinearities, Comput. Math. with Appl., 75(11) (2018), 3946-3956.
  • [29] M. Tucsnak, Semi-internal stabilization for a nonlinear Euler-Bernoulli equation, Math. Method. Appl. Sci., 19 (1996), 897-907.
  • [30] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Jorge Ferreira 0000-0002-3209-7439

Erhan Pişkin

Carlos Raposo 0000-0001-8014-7499

Mohammad Shahrouzi

Hazal Yüksekkaya

Publication Date March 15, 2022
Submission Date November 25, 2021
Acceptance Date January 22, 2022
Published in Issue Year 2022

Cite

APA Ferreira, J., Pişkin, E., Raposo, C., Shahrouzi, M., et al. (2022). Stability Result for a Kirchhoff Beam Equation with Variable Exponent and Time Delay. Universal Journal of Mathematics and Applications, 5(1), 1-9. https://doi.org/10.32323/ujma.1028304
AMA Ferreira J, Pişkin E, Raposo C, Shahrouzi M, Yüksekkaya H. Stability Result for a Kirchhoff Beam Equation with Variable Exponent and Time Delay. Univ. J. Math. Appl. March 2022;5(1):1-9. doi:10.32323/ujma.1028304
Chicago Ferreira, Jorge, Erhan Pişkin, Carlos Raposo, Mohammad Shahrouzi, and Hazal Yüksekkaya. “Stability Result for a Kirchhoff Beam Equation With Variable Exponent and Time Delay”. Universal Journal of Mathematics and Applications 5, no. 1 (March 2022): 1-9. https://doi.org/10.32323/ujma.1028304.
EndNote Ferreira J, Pişkin E, Raposo C, Shahrouzi M, Yüksekkaya H (March 1, 2022) Stability Result for a Kirchhoff Beam Equation with Variable Exponent and Time Delay. Universal Journal of Mathematics and Applications 5 1 1–9.
IEEE J. Ferreira, E. Pişkin, C. Raposo, M. Shahrouzi, and H. Yüksekkaya, “Stability Result for a Kirchhoff Beam Equation with Variable Exponent and Time Delay”, Univ. J. Math. Appl., vol. 5, no. 1, pp. 1–9, 2022, doi: 10.32323/ujma.1028304.
ISNAD Ferreira, Jorge et al. “Stability Result for a Kirchhoff Beam Equation With Variable Exponent and Time Delay”. Universal Journal of Mathematics and Applications 5/1 (March 2022), 1-9. https://doi.org/10.32323/ujma.1028304.
JAMA Ferreira J, Pişkin E, Raposo C, Shahrouzi M, Yüksekkaya H. Stability Result for a Kirchhoff Beam Equation with Variable Exponent and Time Delay. Univ. J. Math. Appl. 2022;5:1–9.
MLA Ferreira, Jorge et al. “Stability Result for a Kirchhoff Beam Equation With Variable Exponent and Time Delay”. Universal Journal of Mathematics and Applications, vol. 5, no. 1, 2022, pp. 1-9, doi:10.32323/ujma.1028304.
Vancouver Ferreira J, Pişkin E, Raposo C, Shahrouzi M, Yüksekkaya H. Stability Result for a Kirchhoff Beam Equation with Variable Exponent and Time Delay. Univ. J. Math. Appl. 2022;5(1):1-9.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.