Research Article
BibTex RIS Cite
Year 2023, , 1 - 6, 28.03.2023
https://doi.org/10.32323/ujma.1143751

Abstract

References

  • [1] J. J. O’Connor, E. F. Robertson, Jacopo Francesco Riccati, Retrieved from https://mathshistory.st-andrews.ac.uk/Biographies/Riccati/, 1996.
  • [2] W. T. Reid, Riccati Differential Equations, Academic Press, New York, 1972.
  • [3] B. D. Anderson, J. B. Moore, Optimal control-linear quadratic methods, Prentice-Hall, New Jersey, 1999.
  • [4] S. Bittanti, P. Colaneri, G. Guardabassi, Periodic solutions of periodic Riccati equations, IEEE Trans. Autom. Control, 29 (1984), 665-667.
  • [5] I. Lasiecka, R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/point Control Problems: Continuous Theory and Approximation Theory, Lecture Notes in Control and Information Sciences, Volume 164, Berlin, Springer, 1991.
  • [6] C. Yang, J. Hou, B. Qin, Numerical solution of Riccati differential equations by using hybrid functions and tau method, International Scholarly and Scientific Research & Innovation, 6(8) (2012), 871-874.
  • [7] E. W. Noussair, C. A. Swanson, Oscillation of semilinear elliptic inequalities by Riccati equation, Can. Math. J., 32(4) (1980), 908-923.
  • [8] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Math. Sci. Eng., Volume 48, Academic Press, 1968.
  • [9] C. A. Swanson, Semilinear second order elliptic oscillation, Canad. Math. Bull., 22 (1979), 139-157.
  • [10] H. Davis, Introduction to Nonlinear Differential and Integral Equations, Courier Dover Publications, 1962.
  • [11] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1956.
  • [12] A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition, Chapman& Hall/CRC, Boca Raton, 2003.
  • [13] N. Saad, R. L. Richard, H. C¸ iftc¸i, Solutions for certain classes of the Riccati differential equation, J. Phys. A: Math. Theor., 40 (2007), 10903-10914.
  • [14] D. Zwillinger, Handbook of Differential Equations, Academic Press, Boston, 1989.
  • [15] L. Bougoffa, New conditions for obtaining the exact solutions of the general Riccati equation, Sci. World J., Article ID 401741, (2014) 8 pages.
  • [16] T. Harko, S. N. Lobo Francisco, M. K. Mak, Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions, Univers. J. Appl. Math. 2(2) (2014), 109-118
  • [17] M. K. Mak, T. Harko, New further integrability cases for the Riccati equation, Appl. Math. Comput., 219 (2013), 7465-7471.
  • [18] R. K. Nagle, E. B. Saff, A. D. Snider, Fundamentals of Differential Equations, 8th Edition, Pearson, 2012.

A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations

Year 2023, , 1 - 6, 28.03.2023
https://doi.org/10.32323/ujma.1143751

Abstract

We give a useful and practicable solution method for the general Riccati differential equation of the form $w^{\prime }\left( x\right) =p\left( x\right) +q\left( x\right) w\left( x\right) +r\left( x\right) w^{2}\left( x\right) $. In order to get the general solution many authors have been interested this type equation. They show that if there exists some relation about the coefficients $p\left( x\right),$ $q\left( x\right),$ and $r\left( x\right) $ then the general solution of this equation can be given in a closed form. We also determine some relations between these coefficients and find the general solutions to the given equation. Finally, we give some examples to illustrate the importance of the presented method.

References

  • [1] J. J. O’Connor, E. F. Robertson, Jacopo Francesco Riccati, Retrieved from https://mathshistory.st-andrews.ac.uk/Biographies/Riccati/, 1996.
  • [2] W. T. Reid, Riccati Differential Equations, Academic Press, New York, 1972.
  • [3] B. D. Anderson, J. B. Moore, Optimal control-linear quadratic methods, Prentice-Hall, New Jersey, 1999.
  • [4] S. Bittanti, P. Colaneri, G. Guardabassi, Periodic solutions of periodic Riccati equations, IEEE Trans. Autom. Control, 29 (1984), 665-667.
  • [5] I. Lasiecka, R. Triggiani, Differential and Algebraic Riccati Equations with Application to Boundary/point Control Problems: Continuous Theory and Approximation Theory, Lecture Notes in Control and Information Sciences, Volume 164, Berlin, Springer, 1991.
  • [6] C. Yang, J. Hou, B. Qin, Numerical solution of Riccati differential equations by using hybrid functions and tau method, International Scholarly and Scientific Research & Innovation, 6(8) (2012), 871-874.
  • [7] E. W. Noussair, C. A. Swanson, Oscillation of semilinear elliptic inequalities by Riccati equation, Can. Math. J., 32(4) (1980), 908-923.
  • [8] C. A. Swanson, Comparison and oscillation theory of linear differential equations, Math. Sci. Eng., Volume 48, Academic Press, 1968.
  • [9] C. A. Swanson, Semilinear second order elliptic oscillation, Canad. Math. Bull., 22 (1979), 139-157.
  • [10] H. Davis, Introduction to Nonlinear Differential and Integral Equations, Courier Dover Publications, 1962.
  • [11] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1956.
  • [12] A. D. Polyanin, V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition, Chapman& Hall/CRC, Boca Raton, 2003.
  • [13] N. Saad, R. L. Richard, H. C¸ iftc¸i, Solutions for certain classes of the Riccati differential equation, J. Phys. A: Math. Theor., 40 (2007), 10903-10914.
  • [14] D. Zwillinger, Handbook of Differential Equations, Academic Press, Boston, 1989.
  • [15] L. Bougoffa, New conditions for obtaining the exact solutions of the general Riccati equation, Sci. World J., Article ID 401741, (2014) 8 pages.
  • [16] T. Harko, S. N. Lobo Francisco, M. K. Mak, Analytical solutions of the Riccati equation with coefficients satisfying integral or differential conditions with arbitrary functions, Univers. J. Appl. Math. 2(2) (2014), 109-118
  • [17] M. K. Mak, T. Harko, New further integrability cases for the Riccati equation, Appl. Math. Comput., 219 (2013), 7465-7471.
  • [18] R. K. Nagle, E. B. Saff, A. D. Snider, Fundamentals of Differential Equations, 8th Edition, Pearson, 2012.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Adil Mısır

Publication Date March 28, 2023
Submission Date July 14, 2022
Acceptance Date January 4, 2023
Published in Issue Year 2023

Cite

APA Mısır, A. (2023). A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations. Universal Journal of Mathematics and Applications, 6(1), 1-6. https://doi.org/10.32323/ujma.1143751
AMA Mısır A. A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations. Univ. J. Math. Appl. March 2023;6(1):1-6. doi:10.32323/ujma.1143751
Chicago Mısır, Adil. “A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations”. Universal Journal of Mathematics and Applications 6, no. 1 (March 2023): 1-6. https://doi.org/10.32323/ujma.1143751.
EndNote Mısır A (March 1, 2023) A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations. Universal Journal of Mathematics and Applications 6 1 1–6.
IEEE A. Mısır, “A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations”, Univ. J. Math. Appl., vol. 6, no. 1, pp. 1–6, 2023, doi: 10.32323/ujma.1143751.
ISNAD Mısır, Adil. “A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations”. Universal Journal of Mathematics and Applications 6/1 (March 2023), 1-6. https://doi.org/10.32323/ujma.1143751.
JAMA Mısır A. A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations. Univ. J. Math. Appl. 2023;6:1–6.
MLA Mısır, Adil. “A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations”. Universal Journal of Mathematics and Applications, vol. 6, no. 1, 2023, pp. 1-6, doi:10.32323/ujma.1143751.
Vancouver Mısır A. A New Analytic Solution Method for a Class of Generalized Riccati Differential Equations. Univ. J. Math. Appl. 2023;6(1):1-6.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.