Research Article
BibTex RIS Cite
Year 2022, , 130 - 135, 29.12.2022
https://doi.org/10.32323/ujma.1174056

Abstract

Supporting Institution

Bu makale " The first International Karatekin Science and Technology Conference that held on September 1-3, 2022 " konferansına hazırlanan sunumdan elde edilen sonuçlarla ortaya çıkmıştır. Destekleyen herhangi bir kurum yoktur.

Project Number

-

Thanks

The first International Karatekin Science and Technology Conference that held on September 1-3, 2022 konferansı düzenleyen hocalarımıza teşekkür ederim. Ayrıca editöre destek ve yarımları için teşekkür ederim.

References

  • [1] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [2] F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, 2005.
  • [3] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [4] R. L. Devaney, A First Course In Chaotic Dynamical Systems: Theory and Experiment, Second Edition, CRC Press, Taylor and Francis Group, 2020.
  • [5] L. Keen, Julia sets, Chaos and Fractals, the Mathematics behind the Computer Graphics, ed. Devaney and Keen, Proc. Symp. Appl. Math., 39, Amer. Math. Soc., (1989), 57-75.
  • [6] G. Julia, Memoire Sur l’it´eration des functions rationelles, J. Math. Pures Appl., 8 (1918), 47-245. See also Oeuvres de Gaston Julia, Gauthier-Villars, Paris, 1 (1918), 121-319.
  • [7] J. H. Hubbard, B. B. Hubbard, Vector Calculus Linear Algebra, and Differential Forms, Prentice Hall. Upper Saddle River, New Jersey, 07458, 1990.
  • [8] A. Beardon, Iteration of Rational Functions, Springer-Verlag, 1991.

Singular Perturbations of Multibrot Set Polynomials

Year 2022, , 130 - 135, 29.12.2022
https://doi.org/10.32323/ujma.1174056

Abstract

We will give a complete description of the dynamics of the rational map $N_{F_{M_c}}(z)=\frac{3z^4-2z^3+c}{4z^3-3z^2+c}$ where c is a complex parameter. These are rational maps $N_{F_{M_c}}$ arising from Newton's method. The polynomial of Newton iteration function is obtained from singularly perturbed of the Multibrot set polynomial.

Project Number

-

References

  • [1] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [2] F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, 2005.
  • [3] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [4] R. L. Devaney, A First Course In Chaotic Dynamical Systems: Theory and Experiment, Second Edition, CRC Press, Taylor and Francis Group, 2020.
  • [5] L. Keen, Julia sets, Chaos and Fractals, the Mathematics behind the Computer Graphics, ed. Devaney and Keen, Proc. Symp. Appl. Math., 39, Amer. Math. Soc., (1989), 57-75.
  • [6] G. Julia, Memoire Sur l’it´eration des functions rationelles, J. Math. Pures Appl., 8 (1918), 47-245. See also Oeuvres de Gaston Julia, Gauthier-Villars, Paris, 1 (1918), 121-319.
  • [7] J. H. Hubbard, B. B. Hubbard, Vector Calculus Linear Algebra, and Differential Forms, Prentice Hall. Upper Saddle River, New Jersey, 07458, 1990.
  • [8] A. Beardon, Iteration of Rational Functions, Springer-Verlag, 1991.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Figen Çilingir

Project Number -
Publication Date December 29, 2022
Submission Date September 12, 2022
Acceptance Date October 31, 2022
Published in Issue Year 2022

Cite

APA Çilingir, F. (2022). Singular Perturbations of Multibrot Set Polynomials. Universal Journal of Mathematics and Applications, 5(4), 130-135. https://doi.org/10.32323/ujma.1174056
AMA Çilingir F. Singular Perturbations of Multibrot Set Polynomials. Univ. J. Math. Appl. December 2022;5(4):130-135. doi:10.32323/ujma.1174056
Chicago Çilingir, Figen. “Singular Perturbations of Multibrot Set Polynomials”. Universal Journal of Mathematics and Applications 5, no. 4 (December 2022): 130-35. https://doi.org/10.32323/ujma.1174056.
EndNote Çilingir F (December 1, 2022) Singular Perturbations of Multibrot Set Polynomials. Universal Journal of Mathematics and Applications 5 4 130–135.
IEEE F. Çilingir, “Singular Perturbations of Multibrot Set Polynomials”, Univ. J. Math. Appl., vol. 5, no. 4, pp. 130–135, 2022, doi: 10.32323/ujma.1174056.
ISNAD Çilingir, Figen. “Singular Perturbations of Multibrot Set Polynomials”. Universal Journal of Mathematics and Applications 5/4 (December 2022), 130-135. https://doi.org/10.32323/ujma.1174056.
JAMA Çilingir F. Singular Perturbations of Multibrot Set Polynomials. Univ. J. Math. Appl. 2022;5:130–135.
MLA Çilingir, Figen. “Singular Perturbations of Multibrot Set Polynomials”. Universal Journal of Mathematics and Applications, vol. 5, no. 4, 2022, pp. 130-5, doi:10.32323/ujma.1174056.
Vancouver Çilingir F. Singular Perturbations of Multibrot Set Polynomials. Univ. J. Math. Appl. 2022;5(4):130-5.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.