Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 2, 94 - 99, 28.06.2019
https://doi.org/10.32323/ujma.543952

Öz

Kaynakça

  • [1] G. C. Rota and G. Strang. A note on the joint spectral radius, Proc. Netherlands Acad., 22 (1960) 379-381.
  • [2] R. Jungers, The Joint Spectral Radius: Theory and Applications, Springer, Berlin, 2009.
  • [3] V. Kozyakin, On the computational aspects of the theory of joint spectral radius, Dokl. Akad. Nauk, 427 (2009), 160-164, in Russian, translation in Doklady Mathematics, 80 (2009), 487-491.
  • [4] X. Dai, Y. Huang and M. Xiao, Almost sure stability of discrete-time switched linear systems: A topological point of view, SIAM J. Control Optim., 47 (2008), 2137-156.
  • [5] J.-W. Lee and G. E. Dullerud, Uniform stabilization of discrete-time switched and Markovian jump linear systems, Automatica, 42 (2), (2006) 205-218.
  • [6] D. Liberzon, Switching in Systems and Control. Birkh´auser, Boston, 2003.
  • [7] H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results, IEEE Transac. on Automatic Control, 54 (2), (2009) 308-322.
  • [8] R. Shorten, F. Wirth, O. Mason, K.Wul and C. King, Stability criteria for switched and hybrid systems, SIAM Rev., 49 (2007), 545-592.
  • [9] W. Xiang and J. Xiao, Convex sufficient conditions on asymptotic stability and l2 gain performance for uncertain discrete-time switched linear systems. IET Control Theory Appl. 8 (3), (2014), 211-218.
  • [10] G. Zhai and X. Xu, A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching, Int. J. Appl. Math. Comput. Sci., 20 (2), (2010), 249-259.
  • [11] L. Zhang, Y. Zhu, P. Shi, Q. Lu, Time-Dependent Switched Discrete-Time Linear Systems: Control and Filtering Springer International Publishing, Switzerland, 2016.
  • [12] C. Heil and G. Strang, Continuity of the joint spectral radius: Applications to wavelets, in ”Linear Algebra for Signal Processing,” IMA Vol. Math. Appl. 69, Springer-Verlag, New York, (1995), 51-61.
  • [13] I. D. Morris, A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory, Adv. Math., 225 (2010), 3425-3445.
  • [14] V. Kozyakin, On accuracy of approximation of the spectral radius by the Gelfand formula, Linear Algebra Appl., 431 (2009), 2134-2141.
  • [15] V. Kozyakin, A relaxation scheme for computation of the joint spectral radius of matrix sets, J. Difference Equ. Appl., 17 (2), (2011) 185-201.
  • [16] V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 865-876.
  • [17] P.A. Parrilo and A. Jadbabaie, Approximation of the joint spectral radius using sum of squares, Linear Algebra Appl., 428 (2008), 2385-2402
  • [18] J. N. Tsitsiklis and V. D. Blondel, The Lyapunov exponent and joint spectral radius of pairs of matrices are hard when not impossible—to compute and to approximate, Math. Control, Signals and Systems, 10 (1997), 31-40.
  • [19] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications Vol. 209, Birkh˝auser Verlag, Basel, 2010.
  • [20] M.I. Gil’. Difference Equations in Normed Spaces. Stability and Oscillations, North-Holland, Mathematics Studies 206, Elsevier, Amsterdam, 2007.
  • [21] M.I. Gil’, Operator Functions and Operator Equations, World Scientific, New Jersey, 2018.

A Bound for the Joint Spectral Radius of Operators in a Hilbert Space

Yıl 2019, Cilt: 2 Sayı: 2, 94 - 99, 28.06.2019
https://doi.org/10.32323/ujma.543952

Öz

We suggest a bound for the joint spectral radius of a finite set of operators in a Hilbert space. In appropriate situations that bound enables us to avoid complicated calculations and gives a new explicit stability test for the discrete time switched systems. The illustrative example is given. Our results are new even in the finite dimensional case.

Kaynakça

  • [1] G. C. Rota and G. Strang. A note on the joint spectral radius, Proc. Netherlands Acad., 22 (1960) 379-381.
  • [2] R. Jungers, The Joint Spectral Radius: Theory and Applications, Springer, Berlin, 2009.
  • [3] V. Kozyakin, On the computational aspects of the theory of joint spectral radius, Dokl. Akad. Nauk, 427 (2009), 160-164, in Russian, translation in Doklady Mathematics, 80 (2009), 487-491.
  • [4] X. Dai, Y. Huang and M. Xiao, Almost sure stability of discrete-time switched linear systems: A topological point of view, SIAM J. Control Optim., 47 (2008), 2137-156.
  • [5] J.-W. Lee and G. E. Dullerud, Uniform stabilization of discrete-time switched and Markovian jump linear systems, Automatica, 42 (2), (2006) 205-218.
  • [6] D. Liberzon, Switching in Systems and Control. Birkh´auser, Boston, 2003.
  • [7] H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: a survey of recent results, IEEE Transac. on Automatic Control, 54 (2), (2009) 308-322.
  • [8] R. Shorten, F. Wirth, O. Mason, K.Wul and C. King, Stability criteria for switched and hybrid systems, SIAM Rev., 49 (2007), 545-592.
  • [9] W. Xiang and J. Xiao, Convex sufficient conditions on asymptotic stability and l2 gain performance for uncertain discrete-time switched linear systems. IET Control Theory Appl. 8 (3), (2014), 211-218.
  • [10] G. Zhai and X. Xu, A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching, Int. J. Appl. Math. Comput. Sci., 20 (2), (2010), 249-259.
  • [11] L. Zhang, Y. Zhu, P. Shi, Q. Lu, Time-Dependent Switched Discrete-Time Linear Systems: Control and Filtering Springer International Publishing, Switzerland, 2016.
  • [12] C. Heil and G. Strang, Continuity of the joint spectral radius: Applications to wavelets, in ”Linear Algebra for Signal Processing,” IMA Vol. Math. Appl. 69, Springer-Verlag, New York, (1995), 51-61.
  • [13] I. D. Morris, A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory, Adv. Math., 225 (2010), 3425-3445.
  • [14] V. Kozyakin, On accuracy of approximation of the spectral radius by the Gelfand formula, Linear Algebra Appl., 431 (2009), 2134-2141.
  • [15] V. Kozyakin, A relaxation scheme for computation of the joint spectral radius of matrix sets, J. Difference Equ. Appl., 17 (2), (2011) 185-201.
  • [16] V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 865-876.
  • [17] P.A. Parrilo and A. Jadbabaie, Approximation of the joint spectral radius using sum of squares, Linear Algebra Appl., 428 (2008), 2385-2402
  • [18] J. N. Tsitsiklis and V. D. Blondel, The Lyapunov exponent and joint spectral radius of pairs of matrices are hard when not impossible—to compute and to approximate, Math. Control, Signals and Systems, 10 (1997), 31-40.
  • [19] T. Eisner, Stability of Operators and Operator Semigroups, Operator Theory: Advances and Applications Vol. 209, Birkh˝auser Verlag, Basel, 2010.
  • [20] M.I. Gil’. Difference Equations in Normed Spaces. Stability and Oscillations, North-Holland, Mathematics Studies 206, Elsevier, Amsterdam, 2007.
  • [21] M.I. Gil’, Operator Functions and Operator Equations, World Scientific, New Jersey, 2018.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Michael Gil' 0000-0002-6404-9618

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 25 Mart 2019
Kabul Tarihi 13 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA Gil’, M. (2019). A Bound for the Joint Spectral Radius of Operators in a Hilbert Space. Universal Journal of Mathematics and Applications, 2(2), 94-99. https://doi.org/10.32323/ujma.543952
AMA Gil’ M. A Bound for the Joint Spectral Radius of Operators in a Hilbert Space. Univ. J. Math. Appl. Haziran 2019;2(2):94-99. doi:10.32323/ujma.543952
Chicago Gil’, Michael. “A Bound for the Joint Spectral Radius of Operators in a Hilbert Space”. Universal Journal of Mathematics and Applications 2, sy. 2 (Haziran 2019): 94-99. https://doi.org/10.32323/ujma.543952.
EndNote Gil’ M (01 Haziran 2019) A Bound for the Joint Spectral Radius of Operators in a Hilbert Space. Universal Journal of Mathematics and Applications 2 2 94–99.
IEEE M. Gil’, “A Bound for the Joint Spectral Radius of Operators in a Hilbert Space”, Univ. J. Math. Appl., c. 2, sy. 2, ss. 94–99, 2019, doi: 10.32323/ujma.543952.
ISNAD Gil’, Michael. “A Bound for the Joint Spectral Radius of Operators in a Hilbert Space”. Universal Journal of Mathematics and Applications 2/2 (Haziran 2019), 94-99. https://doi.org/10.32323/ujma.543952.
JAMA Gil’ M. A Bound for the Joint Spectral Radius of Operators in a Hilbert Space. Univ. J. Math. Appl. 2019;2:94–99.
MLA Gil’, Michael. “A Bound for the Joint Spectral Radius of Operators in a Hilbert Space”. Universal Journal of Mathematics and Applications, c. 2, sy. 2, 2019, ss. 94-99, doi:10.32323/ujma.543952.
Vancouver Gil’ M. A Bound for the Joint Spectral Radius of Operators in a Hilbert Space. Univ. J. Math. Appl. 2019;2(2):94-9.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.