The purpose of this paper is to analyze the significance of new $g$-topologies defined in statistical metric spaces and we prove various properties for the neighbourhoods defined by Thorp in statistical metric spaces. Also, we give a partial answer to the questions, namely "What are the necessary and sufficient conditions that the $g$-topology of $type V$ to be of $type V_{D}?,$ the $g$-topology of $type V_{\alpha}$ to be the $g$-topology of $type V_{D} ?$ and the $g$-topology of $type V_{\alpha}$ to be a topology?" raised by Thorp in 1962. Finally, we discuss the relations between $\M_{\Omega}$-open sets in generalized metric spaces and various $g$-topology neighbourhoods defined in statistical metric spaces. Also, we prove weakly complete metric space is equivalent to a complete metric space if $\Omega$ satisfies the $\mathcal{V}$-property.
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Eylül 2019 |
Gönderilme Tarihi | 6 Mayıs 2019 |
Kabul Tarihi | 3 Ağustos 2019 |
Yayımlandığı Sayı | Yıl 2019 Cilt: 2 Sayı: 3 |
Universal Journal of Mathematics and Applications
UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.