Research Article
BibTex RIS Cite

Hermite-Hadamard type Inequalities via $p$--Harmonic Exponential type Convexity and Applications

Year 2021, Volume: 4 Issue: 2, 59 - 69, 30.06.2021

Abstract

In this work, we introduce the idea and concept of $p$--harmonic exponential type convex functions. We elaborate on the newly introduced idea by examples and some interesting algebraic properties. In addition, we attain the novel version of Hermite--Hadamard type inequality in the mode of the newly introduced definition and on the basis of lemmas, some refinements of the Hermite--Hadamard type inequalities in the support of the newly introduced idea are established. Finally, we investigate and explore some integral inequalities in the form of applications for the arithmetic, geometric, harmonic and logarithmic means. The amazing tools and interesting ideas of this work may inspire and motivate further research in this direction furthermore.

Supporting Institution

COMSATS university Islamabad, Lahore Campus

Project Number

Nill

Thanks

Special thanks to the Dergi park organizer.

References

  • [1] G. Alirezaei, R. Mahar, On exponentially concave functions and their impact in information theory,2018 Information Theory and Application Workshop, San Diego, CA, 2018 (2018), doi:10.1109/ITA.2018.8503202, 1–10.
  • [2] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2) (2007), 1294–1308.
  • [3] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. -M. Chu, Hermite–Hadamard type inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12(2) (2018), 405–409.
  • [4] J. Brownlee, Arithmetic, geometric and harmonic means for machine learning, Statistical methods for machine learning, Machine learning mastery, 2019.
  • [5] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, n–polynomial exponential type p–convex function with some related inequalities and their applications, Heliyon., 6 (2020), 1–9.
  • [6] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, Hermite–Hadamard–type inequalities via n-polynomial exponential–type convexity and their applications, Adv. Differ. Equ., 508 (2020), 1–25.
  • [7] H. Budak, H. Kara, M.E. Kiris, On Hermite–Hadamard type inequalities for co-ordinated trignometrically r–convex functions, T. Math, J., 13(2) (2020), 1–26.
  • [8] R. J. Dalpatadu, The arithmetic–geometric–harmonic mean, JSM Math. Stat., (2014).
  • [9] S. S. Dragomir, I. Gomm, Some Hermite–Hadamard’s inequality functions whose exponentials are convex, Babes Bolyai Math., 60 (2015), 527—534.
  • [10] S. S. Dragomir, V. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • [11] W. Geo, A. Kashuri, S. I. Butt, M. Tariq, A. Aslam, M. Nadeem, New inequalities via n–polynomial harmonically exponential type convex functions, AIMS Math., 5(6) (2020), 6856–6873.
  • [12] J. H. He, He Chengtian’s inequality and its applications, Appl. Math. Comput., 151(3) (2004), 887–891.
  • [13] J. H. He, Max–min approach to nonlinear oscillators, Int. J. Nonlinear Sci. Numer. Simul., 9(2) (2008), 207–210.
  • [14] J. H. He, An improved amplitude–frequency formulation for nonlinear oscillators, Int. J. Nonlinear Sci. Numer. Simul., 9(2) (2008), 211–212.
  • [15] ´I. ´Is¸can, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat., 43(6) (2014), 935–945.
  • [16] M. Kadakal, ˙I. ˙Is¸can, Exponential convexity and some related inequalities, J. Inequal. Appl., 2020(82) 2020. 1–10.
  • [17] H. Kara, H. Budak, M.E. Kiris, On Fejer type inequalities for co-ordinated hyperbolic p–convex functions, AIMS Math., 5(5) (2020), 4681–4701.
  • [18] Y. Khurshid, M. A. Khan, Y. -M. Chu, Conformable integral inequalities of the Hermite–Hadamard type in terms of GG– and GA–convexities, J. Funct. Spaces., (2019), Article ID 6926107.
  • [19] K. Mehrez, P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285.
  • [20] D. S. Mitrinovi´c, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications, East European Series, 61, Kluwer Academic Publishers Group, Dordrecht, 1993.
  • [21] C. P. Niculescu, L. E. Persson, Convex functions and their applications, Springer, New York, 2006.
  • [22] M. A. Noor, K. I. Noor, S. Iftikhar, Harmite–Hadamard inequalities for harmonic nonconvex function, MAGNT Research Report., 4(1) (2016), 24–40.
  • [23] M. A. Noor, K. I. Noor, S. Iftikhar, Integral inequalities for diffrential p–harmonic convex function, Filomet., 31(20) (2017), 6575–6584.
  • [24] M. A. Noor, K. I. Noor, S. Iftikhar, Newton inequalities for p–harmonic convex function, Honam. Mathematical. J., 40(2) (2018), 239–250.
  • [25] M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B. Sci. Bull., Series A, 77(1) (2015), 5–16.
  • [26] S. Pal, T. K. L. Wong, On exponentially concave functions and a new information geometry, The Annals of probability., 46(2) (2018), 1070–1113.
  • [27] H. N. Shi, J. Zhang, Some new judgement theorems of Schur geometric and schur harmonic convexities for a class of symmetric function, J. Inequal. Appl., 2013(527) (2013).
  • [28] T. Toplu, M. Kadakal, ˙I. ˙Is¸can, On n–polynomial convexity and some related inequalities, AIMS Math., 5(2) (2020), 1304–1318.
  • [29] S. Varosanec, On h–convexity, J. Math. Anal. Appl., 326 (2007), 303—311.
Year 2021, Volume: 4 Issue: 2, 59 - 69, 30.06.2021

Abstract

Project Number

Nill

References

  • [1] G. Alirezaei, R. Mahar, On exponentially concave functions and their impact in information theory,2018 Information Theory and Application Workshop, San Diego, CA, 2018 (2018), doi:10.1109/ITA.2018.8503202, 1–10.
  • [2] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335(2) (2007), 1294–1308.
  • [3] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. -M. Chu, Hermite–Hadamard type inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12(2) (2018), 405–409.
  • [4] J. Brownlee, Arithmetic, geometric and harmonic means for machine learning, Statistical methods for machine learning, Machine learning mastery, 2019.
  • [5] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, n–polynomial exponential type p–convex function with some related inequalities and their applications, Heliyon., 6 (2020), 1–9.
  • [6] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, Hermite–Hadamard–type inequalities via n-polynomial exponential–type convexity and their applications, Adv. Differ. Equ., 508 (2020), 1–25.
  • [7] H. Budak, H. Kara, M.E. Kiris, On Hermite–Hadamard type inequalities for co-ordinated trignometrically r–convex functions, T. Math, J., 13(2) (2020), 1–26.
  • [8] R. J. Dalpatadu, The arithmetic–geometric–harmonic mean, JSM Math. Stat., (2014).
  • [9] S. S. Dragomir, I. Gomm, Some Hermite–Hadamard’s inequality functions whose exponentials are convex, Babes Bolyai Math., 60 (2015), 527—534.
  • [10] S. S. Dragomir, V. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
  • [11] W. Geo, A. Kashuri, S. I. Butt, M. Tariq, A. Aslam, M. Nadeem, New inequalities via n–polynomial harmonically exponential type convex functions, AIMS Math., 5(6) (2020), 6856–6873.
  • [12] J. H. He, He Chengtian’s inequality and its applications, Appl. Math. Comput., 151(3) (2004), 887–891.
  • [13] J. H. He, Max–min approach to nonlinear oscillators, Int. J. Nonlinear Sci. Numer. Simul., 9(2) (2008), 207–210.
  • [14] J. H. He, An improved amplitude–frequency formulation for nonlinear oscillators, Int. J. Nonlinear Sci. Numer. Simul., 9(2) (2008), 211–212.
  • [15] ´I. ´Is¸can, Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe J. Math. Stat., 43(6) (2014), 935–945.
  • [16] M. Kadakal, ˙I. ˙Is¸can, Exponential convexity and some related inequalities, J. Inequal. Appl., 2020(82) 2020. 1–10.
  • [17] H. Kara, H. Budak, M.E. Kiris, On Fejer type inequalities for co-ordinated hyperbolic p–convex functions, AIMS Math., 5(5) (2020), 4681–4701.
  • [18] Y. Khurshid, M. A. Khan, Y. -M. Chu, Conformable integral inequalities of the Hermite–Hadamard type in terms of GG– and GA–convexities, J. Funct. Spaces., (2019), Article ID 6926107.
  • [19] K. Mehrez, P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285.
  • [20] D. S. Mitrinovi´c, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications, East European Series, 61, Kluwer Academic Publishers Group, Dordrecht, 1993.
  • [21] C. P. Niculescu, L. E. Persson, Convex functions and their applications, Springer, New York, 2006.
  • [22] M. A. Noor, K. I. Noor, S. Iftikhar, Harmite–Hadamard inequalities for harmonic nonconvex function, MAGNT Research Report., 4(1) (2016), 24–40.
  • [23] M. A. Noor, K. I. Noor, S. Iftikhar, Integral inequalities for diffrential p–harmonic convex function, Filomet., 31(20) (2017), 6575–6584.
  • [24] M. A. Noor, K. I. Noor, S. Iftikhar, Newton inequalities for p–harmonic convex function, Honam. Mathematical. J., 40(2) (2018), 239–250.
  • [25] M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B. Sci. Bull., Series A, 77(1) (2015), 5–16.
  • [26] S. Pal, T. K. L. Wong, On exponentially concave functions and a new information geometry, The Annals of probability., 46(2) (2018), 1070–1113.
  • [27] H. N. Shi, J. Zhang, Some new judgement theorems of Schur geometric and schur harmonic convexities for a class of symmetric function, J. Inequal. Appl., 2013(527) (2013).
  • [28] T. Toplu, M. Kadakal, ˙I. ˙Is¸can, On n–polynomial convexity and some related inequalities, AIMS Math., 5(2) (2020), 1304–1318.
  • [29] S. Varosanec, On h–convexity, J. Math. Anal. Appl., 326 (2007), 303—311.
There are 29 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Muhammad Tariq 0000-0001-8372-2532

Project Number Nill
Publication Date June 30, 2021
Submission Date January 28, 2021
Acceptance Date May 10, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Tariq, M. (2021). Hermite-Hadamard type Inequalities via $p$--Harmonic Exponential type Convexity and Applications. Universal Journal of Mathematics and Applications, 4(2), 59-69. https://doi.org/10.32323/ujma.870050
AMA Tariq M. Hermite-Hadamard type Inequalities via $p$--Harmonic Exponential type Convexity and Applications. Univ. J. Math. Appl. June 2021;4(2):59-69. doi:10.32323/ujma.870050
Chicago Tariq, Muhammad. “Hermite-Hadamard Type Inequalities via $p$--Harmonic Exponential Type Convexity and Applications”. Universal Journal of Mathematics and Applications 4, no. 2 (June 2021): 59-69. https://doi.org/10.32323/ujma.870050.
EndNote Tariq M (June 1, 2021) Hermite-Hadamard type Inequalities via $p$--Harmonic Exponential type Convexity and Applications. Universal Journal of Mathematics and Applications 4 2 59–69.
IEEE M. Tariq, “Hermite-Hadamard type Inequalities via $p$--Harmonic Exponential type Convexity and Applications”, Univ. J. Math. Appl., vol. 4, no. 2, pp. 59–69, 2021, doi: 10.32323/ujma.870050.
ISNAD Tariq, Muhammad. “Hermite-Hadamard Type Inequalities via $p$--Harmonic Exponential Type Convexity and Applications”. Universal Journal of Mathematics and Applications 4/2 (June 2021), 59-69. https://doi.org/10.32323/ujma.870050.
JAMA Tariq M. Hermite-Hadamard type Inequalities via $p$--Harmonic Exponential type Convexity and Applications. Univ. J. Math. Appl. 2021;4:59–69.
MLA Tariq, Muhammad. “Hermite-Hadamard Type Inequalities via $p$--Harmonic Exponential Type Convexity and Applications”. Universal Journal of Mathematics and Applications, vol. 4, no. 2, 2021, pp. 59-69, doi:10.32323/ujma.870050.
Vancouver Tariq M. Hermite-Hadamard type Inequalities via $p$--Harmonic Exponential type Convexity and Applications. Univ. J. Math. Appl. 2021;4(2):59-6.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.