Araştırma Makalesi
BibTex RIS Kaynak Göster

On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces

Yıl 2021, Cilt: 4 Sayı: 3, 94 - 100, 30.09.2021
https://doi.org/10.32323/ujma.977588

Öz

In this paper, we introduce difference double sequence spaces ${I_{2} }^{(\mu,\upsilon)}(M,\Delta)$ and ${I_{2}^{0}}^{(\mu,\upsilon)}(M,\Delta)$ in the intuitionistic fuzzy normed linear spaces. We also investigate some topological properties of these spaces.

Kaynakça

  • Altunda\u{g}, S., Kamber, E., \textit{Weighted statistical convergence in intuitionistic fuzzy normed linear spaces}, J. Inequal. Spec. Funct., \textbf{8}, 113-124 (2017).
  • Altunda\u{g}, S., Kamber, E., \textit{Weighted lacunary statistical convergence in intuitionistic fuzzy normed linear spaces}, Gen. Math. Notes, \textbf{37}, 1-19 (2016). Altunda\u{g}, S., E. Kamber, Lacunary $\Delta$- statistical convergence in intuitionistic fuzzy $n$-normed linear spaces, Journal of inequalities and applications, \textbf{40}, 1-12 (2014).
  • Anastassiou, G.A., \emph{Fuzzy approximation by fuzzy convolution type operators}, Comput. Math. Appl., \textbf{48}, 1369-1386 (2004).
  • Barros, L.C., R.C. Bassanezi, P.A. Tonelli, \emph{Fuzzy modelling in population dynamics}, Ecol. Model., \textbf{128}, 27-33 (2000).
  • Das, P., Kostyrko, P., Wilczynski, W., Malik, P., $I$- and $I^{*}$- the convergence of double sequences, Math. Slovaca \textbf{58}, 605-620 (2008).
  • Erceg, M.A., \emph{Metric spaces in fuzzy set theory}, J. Math. Anal. Appl., \textbf{69}, 205-230 (1979).
  • Fast, H., \textit{Sur la convergence statistique}, Colloq. Math., \textbf{2}, 241-244 (1951).
Yıl 2021, Cilt: 4 Sayı: 3, 94 - 100, 30.09.2021
https://doi.org/10.32323/ujma.977588

Öz

Kaynakça

  • Altunda\u{g}, S., Kamber, E., \textit{Weighted statistical convergence in intuitionistic fuzzy normed linear spaces}, J. Inequal. Spec. Funct., \textbf{8}, 113-124 (2017).
  • Altunda\u{g}, S., Kamber, E., \textit{Weighted lacunary statistical convergence in intuitionistic fuzzy normed linear spaces}, Gen. Math. Notes, \textbf{37}, 1-19 (2016). Altunda\u{g}, S., E. Kamber, Lacunary $\Delta$- statistical convergence in intuitionistic fuzzy $n$-normed linear spaces, Journal of inequalities and applications, \textbf{40}, 1-12 (2014).
  • Anastassiou, G.A., \emph{Fuzzy approximation by fuzzy convolution type operators}, Comput. Math. Appl., \textbf{48}, 1369-1386 (2004).
  • Barros, L.C., R.C. Bassanezi, P.A. Tonelli, \emph{Fuzzy modelling in population dynamics}, Ecol. Model., \textbf{128}, 27-33 (2000).
  • Das, P., Kostyrko, P., Wilczynski, W., Malik, P., $I$- and $I^{*}$- the convergence of double sequences, Math. Slovaca \textbf{58}, 605-620 (2008).
  • Erceg, M.A., \emph{Metric spaces in fuzzy set theory}, J. Math. Anal. Appl., \textbf{69}, 205-230 (1979).
  • Fast, H., \textit{Sur la convergence statistique}, Colloq. Math., \textbf{2}, 241-244 (1951).
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Esra Kamber 0000-0002-8833-3381

Selma Altundağ

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 2 Ağustos 2021
Kabul Tarihi 1 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 3

Kaynak Göster

APA Kamber, E., & Altundağ, S. (2021). On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Universal Journal of Mathematics and Applications, 4(3), 94-100. https://doi.org/10.32323/ujma.977588
AMA Kamber E, Altundağ S. On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Univ. J. Math. Appl. Eylül 2021;4(3):94-100. doi:10.32323/ujma.977588
Chicago Kamber, Esra, ve Selma Altundağ. “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”. Universal Journal of Mathematics and Applications 4, sy. 3 (Eylül 2021): 94-100. https://doi.org/10.32323/ujma.977588.
EndNote Kamber E, Altundağ S (01 Eylül 2021) On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Universal Journal of Mathematics and Applications 4 3 94–100.
IEEE E. Kamber ve S. Altundağ, “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”, Univ. J. Math. Appl., c. 4, sy. 3, ss. 94–100, 2021, doi: 10.32323/ujma.977588.
ISNAD Kamber, Esra - Altundağ, Selma. “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”. Universal Journal of Mathematics and Applications 4/3 (Eylül 2021), 94-100. https://doi.org/10.32323/ujma.977588.
JAMA Kamber E, Altundağ S. On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Univ. J. Math. Appl. 2021;4:94–100.
MLA Kamber, Esra ve Selma Altundağ. “On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces”. Universal Journal of Mathematics and Applications, c. 4, sy. 3, 2021, ss. 94-100, doi:10.32323/ujma.977588.
Vancouver Kamber E, Altundağ S. On Ideal Convergent Difference Double Sequence Spaces in Intuitionistic Fuzzy Normed Linear Spaces. Univ. J. Math. Appl. 2021;4(3):94-100.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.