Araştırma Makalesi
BibTex RIS Kaynak Göster

Connected Square Network Graphs

Yıl 2022, Cilt: 5 Sayı: 2, 57 - 63, 30.06.2022
https://doi.org/10.32323/ujma.1058116

Öz

In this study, connected square network graphs are introduced and two different definitions are given. Firstly, connected square network graphs are shown to be a Hamilton graph. Further, the labelling algorithm of this graph is obtained by using gray code. Finally, its topological properties are obtained, and conclusion are given.

Kaynakça

  • [1] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst., 2(1) (1991), 31-42.
  • [2] H. Y. Chang, R. J. Chen, Incrementally extensible folded hypercube graphs, J. Inf. Sci. Eng., 16(2), (2000), 291-300.
  • [3] Q. Dong, X. Yang, J. Zhao, Y. Y. Tang, Embedding a family of disjoint 3D meshes into a crossed cube, Inf. Sci. 178 (2008), 2396-2405.
  • [4] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distrib. Syst., 40 (1991), 1312-1316.
  • [5] C. J. Lai, C. H. Tsai, H. C. Hsu, T. K. Li, A dynamic programming algorithm for simulation of a multi-dimensional torus in a crossed cube, Inf. Sci., 180 (2010), 5090-5100.
  • [6] M. Abd-El-Barr, T. F. Soman, Topological properties of hierarchical interconnection networks a review and comparison, J. Electr. Comput. Eng., (2011).
  • [7] K. Chose, K. R. Desai, Hierarchical cubic networks, IEEE Trans. Parallel Distrib. Syst., 6 (1995), 427-435.
  • [8] A. Karci, Hierarchical extended Fibonacci cubes, Iran. J. Sci. Technol. Trans. B Eng., 29 (2005), 117-125.
  • [9] A. Karci, Hierarchic graphs based on the Fibonacci numbers, Istanbul Univ. J. Electr. Electron. Eng., 7(1) (2007), 345-365.
  • [10] A. Karcı, B. Selc¸uk, A new hypercube variant: Fractal Cubic Network Graph, Eng. Sci. Technol. an Int. J., 18(1) (2014), 32-41.
  • [11] B. Selc¸uk, A. Karcı, Connected cubic network graph, Eng. Sci. Technol. an Int. J., 20(3) (2017), 934-943.
  • [12] E. D. Knuth, Generating all n-tuples, The Art of Computer Programming, Volume 4A: Enumeration and Backtracking, Pre-Fascicle 2a, 2004.
  • [13] G. Caporossi, I. Gutman, P. Hansen, L. Pavlovi´c, Graphs with maximum connectivity index, Comput. Biol. Chem., 27(1) (2003), 85-90.
Yıl 2022, Cilt: 5 Sayı: 2, 57 - 63, 30.06.2022
https://doi.org/10.32323/ujma.1058116

Öz

Kaynakça

  • [1] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst., 2(1) (1991), 31-42.
  • [2] H. Y. Chang, R. J. Chen, Incrementally extensible folded hypercube graphs, J. Inf. Sci. Eng., 16(2), (2000), 291-300.
  • [3] Q. Dong, X. Yang, J. Zhao, Y. Y. Tang, Embedding a family of disjoint 3D meshes into a crossed cube, Inf. Sci. 178 (2008), 2396-2405.
  • [4] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distrib. Syst., 40 (1991), 1312-1316.
  • [5] C. J. Lai, C. H. Tsai, H. C. Hsu, T. K. Li, A dynamic programming algorithm for simulation of a multi-dimensional torus in a crossed cube, Inf. Sci., 180 (2010), 5090-5100.
  • [6] M. Abd-El-Barr, T. F. Soman, Topological properties of hierarchical interconnection networks a review and comparison, J. Electr. Comput. Eng., (2011).
  • [7] K. Chose, K. R. Desai, Hierarchical cubic networks, IEEE Trans. Parallel Distrib. Syst., 6 (1995), 427-435.
  • [8] A. Karci, Hierarchical extended Fibonacci cubes, Iran. J. Sci. Technol. Trans. B Eng., 29 (2005), 117-125.
  • [9] A. Karci, Hierarchic graphs based on the Fibonacci numbers, Istanbul Univ. J. Electr. Electron. Eng., 7(1) (2007), 345-365.
  • [10] A. Karcı, B. Selc¸uk, A new hypercube variant: Fractal Cubic Network Graph, Eng. Sci. Technol. an Int. J., 18(1) (2014), 32-41.
  • [11] B. Selc¸uk, A. Karcı, Connected cubic network graph, Eng. Sci. Technol. an Int. J., 20(3) (2017), 934-943.
  • [12] E. D. Knuth, Generating all n-tuples, The Art of Computer Programming, Volume 4A: Enumeration and Backtracking, Pre-Fascicle 2a, 2004.
  • [13] G. Caporossi, I. Gutman, P. Hansen, L. Pavlovi´c, Graphs with maximum connectivity index, Comput. Biol. Chem., 27(1) (2003), 85-90.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Burhan Selçuk

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 15 Ocak 2022
Kabul Tarihi 1 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Selçuk, B. (2022). Connected Square Network Graphs. Universal Journal of Mathematics and Applications, 5(2), 57-63. https://doi.org/10.32323/ujma.1058116
AMA Selçuk B. Connected Square Network Graphs. Univ. J. Math. Appl. Haziran 2022;5(2):57-63. doi:10.32323/ujma.1058116
Chicago Selçuk, Burhan. “Connected Square Network Graphs”. Universal Journal of Mathematics and Applications 5, sy. 2 (Haziran 2022): 57-63. https://doi.org/10.32323/ujma.1058116.
EndNote Selçuk B (01 Haziran 2022) Connected Square Network Graphs. Universal Journal of Mathematics and Applications 5 2 57–63.
IEEE B. Selçuk, “Connected Square Network Graphs”, Univ. J. Math. Appl., c. 5, sy. 2, ss. 57–63, 2022, doi: 10.32323/ujma.1058116.
ISNAD Selçuk, Burhan. “Connected Square Network Graphs”. Universal Journal of Mathematics and Applications 5/2 (Haziran 2022), 57-63. https://doi.org/10.32323/ujma.1058116.
JAMA Selçuk B. Connected Square Network Graphs. Univ. J. Math. Appl. 2022;5:57–63.
MLA Selçuk, Burhan. “Connected Square Network Graphs”. Universal Journal of Mathematics and Applications, c. 5, sy. 2, 2022, ss. 57-63, doi:10.32323/ujma.1058116.
Vancouver Selçuk B. Connected Square Network Graphs. Univ. J. Math. Appl. 2022;5(2):57-63.

23181

Universal Journal of Mathematics and Applications 

29207 29139 29137 29138 30898 29130  13377

28629  UJMA'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.