Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 4, 130 - 135, 29.12.2022
https://doi.org/10.32323/ujma.1174056

Abstract

Supporting Institution

Bu makale " The first International Karatekin Science and Technology Conference that held on September 1-3, 2022 " konferansına hazırlanan sunumdan elde edilen sonuçlarla ortaya çıkmıştır. Destekleyen herhangi bir kurum yoktur.

Project Number

-

Thanks

The first International Karatekin Science and Technology Conference that held on September 1-3, 2022 konferansı düzenleyen hocalarımıza teşekkür ederim. Ayrıca editöre destek ve yarımları için teşekkür ederim.

References

  • [1] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [2] F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, 2005.
  • [3] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [4] R. L. Devaney, A First Course In Chaotic Dynamical Systems: Theory and Experiment, Second Edition, CRC Press, Taylor and Francis Group, 2020.
  • [5] L. Keen, Julia sets, Chaos and Fractals, the Mathematics behind the Computer Graphics, ed. Devaney and Keen, Proc. Symp. Appl. Math., 39, Amer. Math. Soc., (1989), 57-75.
  • [6] G. Julia, Memoire Sur l’it´eration des functions rationelles, J. Math. Pures Appl., 8 (1918), 47-245. See also Oeuvres de Gaston Julia, Gauthier-Villars, Paris, 1 (1918), 121-319.
  • [7] J. H. Hubbard, B. B. Hubbard, Vector Calculus Linear Algebra, and Differential Forms, Prentice Hall. Upper Saddle River, New Jersey, 07458, 1990.
  • [8] A. Beardon, Iteration of Rational Functions, Springer-Verlag, 1991.

Singular Perturbations of Multibrot Set Polynomials

Year 2022, Volume: 5 Issue: 4, 130 - 135, 29.12.2022
https://doi.org/10.32323/ujma.1174056

Abstract

We will give a complete description of the dynamics of the rational map $N_{F_{M_c}}(z)=\frac{3z^4-2z^3+c}{4z^3-3z^2+c}$ where c is a complex parameter. These are rational maps $N_{F_{M_c}}$ arising from Newton's method. The polynomial of Newton iteration function is obtained from singularly perturbed of the Multibrot set polynomial.

Project Number

-

References

  • [1] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [2] F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics, Springer, 2005.
  • [3] M. H. Holmes, Introduction to Perturbation Methods, Springer, 1995.
  • [4] R. L. Devaney, A First Course In Chaotic Dynamical Systems: Theory and Experiment, Second Edition, CRC Press, Taylor and Francis Group, 2020.
  • [5] L. Keen, Julia sets, Chaos and Fractals, the Mathematics behind the Computer Graphics, ed. Devaney and Keen, Proc. Symp. Appl. Math., 39, Amer. Math. Soc., (1989), 57-75.
  • [6] G. Julia, Memoire Sur l’it´eration des functions rationelles, J. Math. Pures Appl., 8 (1918), 47-245. See also Oeuvres de Gaston Julia, Gauthier-Villars, Paris, 1 (1918), 121-319.
  • [7] J. H. Hubbard, B. B. Hubbard, Vector Calculus Linear Algebra, and Differential Forms, Prentice Hall. Upper Saddle River, New Jersey, 07458, 1990.
  • [8] A. Beardon, Iteration of Rational Functions, Springer-Verlag, 1991.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Figen Çilingir

Project Number -
Publication Date December 29, 2022
Submission Date September 12, 2022
Acceptance Date October 31, 2022
Published in Issue Year 2022 Volume: 5 Issue: 4

Cite

APA Çilingir, F. (2022). Singular Perturbations of Multibrot Set Polynomials. Universal Journal of Mathematics and Applications, 5(4), 130-135. https://doi.org/10.32323/ujma.1174056
AMA Çilingir F. Singular Perturbations of Multibrot Set Polynomials. Univ. J. Math. Appl. December 2022;5(4):130-135. doi:10.32323/ujma.1174056
Chicago Çilingir, Figen. “Singular Perturbations of Multibrot Set Polynomials”. Universal Journal of Mathematics and Applications 5, no. 4 (December 2022): 130-35. https://doi.org/10.32323/ujma.1174056.
EndNote Çilingir F (December 1, 2022) Singular Perturbations of Multibrot Set Polynomials. Universal Journal of Mathematics and Applications 5 4 130–135.
IEEE F. Çilingir, “Singular Perturbations of Multibrot Set Polynomials”, Univ. J. Math. Appl., vol. 5, no. 4, pp. 130–135, 2022, doi: 10.32323/ujma.1174056.
ISNAD Çilingir, Figen. “Singular Perturbations of Multibrot Set Polynomials”. Universal Journal of Mathematics and Applications 5/4 (December 2022), 130-135. https://doi.org/10.32323/ujma.1174056.
JAMA Çilingir F. Singular Perturbations of Multibrot Set Polynomials. Univ. J. Math. Appl. 2022;5:130–135.
MLA Çilingir, Figen. “Singular Perturbations of Multibrot Set Polynomials”. Universal Journal of Mathematics and Applications, vol. 5, no. 4, 2022, pp. 130-5, doi:10.32323/ujma.1174056.
Vancouver Çilingir F. Singular Perturbations of Multibrot Set Polynomials. Univ. J. Math. Appl. 2022;5(4):130-5.

 23181

Universal Journal of Mathematics and Applications 

29207              

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.