Research Article
BibTex RIS Cite

Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives

Year 2025, Volume: 8 Issue: 3, 158 - 166, 17.09.2025
https://doi.org/10.32323/ujma.1691155

Abstract

Our aim in this paper is to explore the existence of nonnegative solutions for a boundary value problem involving nonlinear Caputo fractional differential equations. The analysis begins with the formulation of superlinear and sublinear conditions, under which the Guo-Krasnosel'skii fixed point theorem is applied in a cone to get the existence of positive solutions. To facilitate this, the corresponding Green's function is constructed, and its essential properties are explored. A number of illustrative examples are included to show the applicability of the theoretical results and emphasize their effectiveness.

References

  • [1] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, World Scientific Publishing, Singapore, 2012. https://doi.org/10.1142/9789814355216
  • [2] H. A. Fallahgoul, S. M. Focardi, F. J. Fabozzi, Fractional Calculus and Fractional Processes with Applications to Financial Economics: Theory and Application, Elsevier Academic Press, London, 2017.
  • [3] R. L. Magin, Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut, 2006.
  • [4] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, 2010. https://doi.org/10.1142/9781848163300
  • [5] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-6042-7
  • [6] L. Sadek, A. Algefary, On quantum trigonometric fractional calculus, Alexandria Eng. J., 120 (2025), 371–377. https://doi.org/10.1016/j.aej.2025.02.005
  • [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0
  • [8] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  • [9] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego, 1999.
  • [10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • [11] C. Bai, Triple positive solutions for a boundary value problem of nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ., 24 (2008), 1–10. http://eudml.org/doc/231470
  • [12] Z. Bai, W. Ge, Existence of three positive solutions for some second-order boundary value problems, Comput. Math. Appl., 48(5-6) (2004), 699–707. https://doi.org/10.1016/j.camwa.2004.03.002
  • [13] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2) (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052
  • [14] P. Borisut, T. Bantaojai, The solution existence of integral boundary value problem involving nonlinear implicit Caputo fractional differential equations in Banach spaces, Bangmod Int. J. Math. Comput. Sci., 7 (2021), 92–101. https://bangmodjmcs.com/index.php/bangmodmcs/article/view/29
  • [15] A. Seemab, M. Ur Rehman, J. Alzabut, A. Hamdi, On the existence of positive solutions for generalized fractional boundary value problems, Bound. Value Probl., 2019 (2019), Article ID 186. https://doi.org/10.1186/s13661-019-01300-8
  • [16] H. Tabti, M. Belmekki, Multiple positive solutions for fractional boundary value problems with integral boundary conditions, Memo. Differ. Equ. Math. Phys., 91 (2024), 161–173. https://rmi.tsu.ge/memoirs/vol91/vol91-10.pdf
  • [17] H. Tabti, M. Nehari, Existence of extremal solutions for mixed nonlinear fractional differential equations with p-Laplacian, Gulf J. Math., 20(2) (2025), 474–488. https://doi.org/10.56947/gjom.v20i2.3262
  • [18] K. Venkatachalam, S. K. Marappan, Results on impulsive $\Psi$-Caputo fractional integro-differential equations with boundary conditions, Bangmod Int. J. Math. Comput. Sci., 10 (2024), 63–73. https://doi.org/10.58715/bangmodjmcs.2024.10.5
  • [19] L. Yang, C. Shen, D. Xie, Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemann-Liouville derivative, Adv. Difference Equ., 2014 (2014), Article ID 284. https://doi.org/10.1186/1687-1847-2014-284
  • [20] X. Zhang, Q. Zhong, Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equations, Bound. Value Probl., 2016(2016), Article ID 65. https://doi.org/10.1186/s13661-016-0572-0
  • [21] D. Zhao, Y. Liu, Multiple positive solutions for nonlinear fractional boundary value problems, Sci. World J., 2013(1) (2013), Article ID 473828. http://dx.doi.org/10.1155/2013/473828
  • [22] D. J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988.
  • [23] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281(1) (2003), 287–306. https://doi.org/10.1016/S0022-247X(03)00100-8
  • [24] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7
There are 24 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Hamza Tabti 0000-0003-3245-873X

Fahd Jarad 0000-0002-3303-0623

Early Pub Date September 15, 2025
Publication Date September 17, 2025
Submission Date May 4, 2025
Acceptance Date September 12, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Tabti, H., & Jarad, F. (2025). Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives. Universal Journal of Mathematics and Applications, 8(3), 158-166. https://doi.org/10.32323/ujma.1691155
AMA Tabti H, Jarad F. Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives. Univ. J. Math. Appl. September 2025;8(3):158-166. doi:10.32323/ujma.1691155
Chicago Tabti, Hamza, and Fahd Jarad. “Existence of Solutions for a Class of Nonlinear Boundary Value Problems With Caputo Fractional Derivatives”. Universal Journal of Mathematics and Applications 8, no. 3 (September 2025): 158-66. https://doi.org/10.32323/ujma.1691155.
EndNote Tabti H, Jarad F (September 1, 2025) Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives. Universal Journal of Mathematics and Applications 8 3 158–166.
IEEE H. Tabti and F. Jarad, “Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives”, Univ. J. Math. Appl., vol. 8, no. 3, pp. 158–166, 2025, doi: 10.32323/ujma.1691155.
ISNAD Tabti, Hamza - Jarad, Fahd. “Existence of Solutions for a Class of Nonlinear Boundary Value Problems With Caputo Fractional Derivatives”. Universal Journal of Mathematics and Applications 8/3 (September2025), 158-166. https://doi.org/10.32323/ujma.1691155.
JAMA Tabti H, Jarad F. Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives. Univ. J. Math. Appl. 2025;8:158–166.
MLA Tabti, Hamza and Fahd Jarad. “Existence of Solutions for a Class of Nonlinear Boundary Value Problems With Caputo Fractional Derivatives”. Universal Journal of Mathematics and Applications, vol. 8, no. 3, 2025, pp. 158-66, doi:10.32323/ujma.1691155.
Vancouver Tabti H, Jarad F. Existence of Solutions for a Class of Nonlinear Boundary Value Problems with Caputo Fractional Derivatives. Univ. J. Math. Appl. 2025;8(3):158-66.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.