Research Article
BibTex RIS Cite

Ayrık Tekil Konvolusyon Yöntemi ile İki Boyutlu Isı Probleminin MATLAB Ortamında Çözümü

Year 2009, Volume: 1 Issue: 1, 56 - 62, 15.01.2009

Abstract

Bu çalısma ayrık tekil konvolusyon yöntemini ve iki boyutlu ısı yayılma denklemine uygulanmasını özetlemektedir. Sayısal hesaplamalarda Dirichlet tipi sınır sartları kullanılmıstır. Bir MATLAB® kodu yardımıyla sayısal hesaplamalar ve grafik sunumlar olusturulmustur. Karsılastırma amaçlı olarak denge durumundaki plak durumu için degiskenlerin ayrıstırılması yöntemiyle de çözüm yapılmıstır.

References

  • [1] S. A. Orszag, Comparison of pseudospectral and spectral approximations, Studies in Applied Mathematics, Vol 51, pp. 253–259, 1972. [2] D. Gottlieb, S. A. Orszag, “Numerical analysis of spectral methods: theory and applications”, SIAM, 1987. [3] R. Vichnevetsky, J. B. Bowles, “Fourier analysis of numerical approximations of hyperbolic equations”, SIAM, Philadelphia, 1982. [4] C. Shu, “Differential quadrature and its applications in engineering”, Springer Verlag, 2000. [5] CW, Bert, M. Malik, “Differential quadrature in computational mechanics: a review”, Appl. Mech. Rev., Vol 49, pp. 1–27, 1996. [6] R.E. Bellman, J. Casti “Differential quadrature and long-term integration”, J. Math. Anal. Appl., Vol. 34, pp. 235–238, 1971. [7] O.C. Zienkiewicz, “The finite element method in engineering science”, McGraw-Hill, New York, 1977. [8] J.N. Reddy, “An introduction to the finite element method”, McGraw- Hill, New York, 2005. [9] G.E. Forsythe, W.R. Wasow, “Finite difference methods for partial differential equations”, Wiley, New York, 1960. [10] R.J., LeVeque, “Finite Volume Methods for Hyperbolic Problems”, Cambridge Texts in Applied Mathematics (No. 31), 2002. [11] D. C. Wan, B. S. V. Patnaik, and G. W. Wei, “A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution”, Numerical Heat Transfer, Part B, Vol 40, pp. 199-228, 2001. [12] G. W. Wei, "Discrete singular convolution for the solution of the Fokker–Planck equation", J. Chem. Phys. Vol 110, pp. 8930, 1999. [13] G. W. Wei, “Vibration analysis by discrete singular convolution”, Journal of Sound and Vibration, Vol 244 (3), pp. 535-553, 2001. [14] Y. B. Zhao, G.W. Wei, Y. Xiang, “Discrete singular convolution for the prediction of high frequency vibration of plates”, Int. J. Solids Struct., Vol 39, pp.65-88 (2002). [15] G. W. Wei, Y. B. Zhao, Y. Xiang, “A novel approach for the analysis of high-frequency vibrations”, Journal of Sound and Vibration, Vol 257(2), pp. 207-246, 2002. [16] A. Seçgin, A. Saide Sarıgül, "Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: Algorithm and verification", Journal of Sound and Vibration, Vol 315, pp. 197–211, 2008. [17] Ö. Civalek, “Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method”, Finite Elements in Analysis and Design, Vol 44, pp. 725–731, 2008. [18] Ö. Civalek, "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Engng, Vol 24, pp. 169–181, 2008. [19] Ö. Civalek, “A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates”, Applied Mathematical Modelling, Vol 33, pp. 300–314, 2009. [20] A. Seçgin, A. Saide Sarıgül, "A novel scheme for the discrete prediction of high-frequency vibration response: Discrete singular convolution– mode superposition approach", Journal of Sound and Vibration, doi:10.1016/j.jsv.2008.08.031 [21] S. Y. Yang, Y. C. Zhou, G. W. Wei, “Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations”, Computer Physics Communications, Vol 143, pp. 113–135, 2002. [22] Z. Shao, Z. Shen, "A Generalized Higher Order Finite-Difference Time- Domain Method and Its Application in Guided-Wave Problems", IEEE Transactions on Microwave Theory and Techniques, Vol 51 (3), pp. 856–861, 2003. [23] Z. Shao, G. W. Wei, S. Zhao, "DSC time-domain solution of Maxwell's equations", Journal of Computational Physics, Vol 189, pp. 427–453, 2003. [24] D.A. Popov, D.V. Sushko, “Computation of singular convolutions”, Applied Problems of Radon Transform (Editör: Simon Gindikin) American Mathematical Society Translations, Series 2, Vol 162, pp. 43- 128, 1994. [25] C.E. Shannon, “Communication In The Presence Of Noise”, Proceedings of the IEEE, Vol 86 (2), pp. 447 – 457, 1998. [26] A.J. Jerri, “The Shannon sampling theorem—Its various extensions and applications: A tutorial review”, Proceedings of the IEEE, Vol 65 (11), pp.1565 – 1596, 1977.

Ayrık Tekil Konvolusyon Yöntemi ile İki Boyutlu Isı Probleminin MATLAB Ortamında Çözümü

Year 2009, Volume: 1 Issue: 1, 56 - 62, 15.01.2009

Abstract

This study summarizes the discrete singular convolution (DSC) method and its implementation to two dimensional transient heat conduction problem. Dirichlet type boundary conditions are used in the calculations. A MATLAB® code is prepared for the numerical calculations and graphical representations. Steady state condition is solved by the method of separation of variables in order to compare the results.

References

  • [1] S. A. Orszag, Comparison of pseudospectral and spectral approximations, Studies in Applied Mathematics, Vol 51, pp. 253–259, 1972. [2] D. Gottlieb, S. A. Orszag, “Numerical analysis of spectral methods: theory and applications”, SIAM, 1987. [3] R. Vichnevetsky, J. B. Bowles, “Fourier analysis of numerical approximations of hyperbolic equations”, SIAM, Philadelphia, 1982. [4] C. Shu, “Differential quadrature and its applications in engineering”, Springer Verlag, 2000. [5] CW, Bert, M. Malik, “Differential quadrature in computational mechanics: a review”, Appl. Mech. Rev., Vol 49, pp. 1–27, 1996. [6] R.E. Bellman, J. Casti “Differential quadrature and long-term integration”, J. Math. Anal. Appl., Vol. 34, pp. 235–238, 1971. [7] O.C. Zienkiewicz, “The finite element method in engineering science”, McGraw-Hill, New York, 1977. [8] J.N. Reddy, “An introduction to the finite element method”, McGraw- Hill, New York, 2005. [9] G.E. Forsythe, W.R. Wasow, “Finite difference methods for partial differential equations”, Wiley, New York, 1960. [10] R.J., LeVeque, “Finite Volume Methods for Hyperbolic Problems”, Cambridge Texts in Applied Mathematics (No. 31), 2002. [11] D. C. Wan, B. S. V. Patnaik, and G. W. Wei, “A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution”, Numerical Heat Transfer, Part B, Vol 40, pp. 199-228, 2001. [12] G. W. Wei, "Discrete singular convolution for the solution of the Fokker–Planck equation", J. Chem. Phys. Vol 110, pp. 8930, 1999. [13] G. W. Wei, “Vibration analysis by discrete singular convolution”, Journal of Sound and Vibration, Vol 244 (3), pp. 535-553, 2001. [14] Y. B. Zhao, G.W. Wei, Y. Xiang, “Discrete singular convolution for the prediction of high frequency vibration of plates”, Int. J. Solids Struct., Vol 39, pp.65-88 (2002). [15] G. W. Wei, Y. B. Zhao, Y. Xiang, “A novel approach for the analysis of high-frequency vibrations”, Journal of Sound and Vibration, Vol 257(2), pp. 207-246, 2002. [16] A. Seçgin, A. Saide Sarıgül, "Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: Algorithm and verification", Journal of Sound and Vibration, Vol 315, pp. 197–211, 2008. [17] Ö. Civalek, “Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method”, Finite Elements in Analysis and Design, Vol 44, pp. 725–731, 2008. [18] Ö. Civalek, "Vibration analysis of conical panels using the method of discrete singular convolution", Commun. Numer. Meth. Engng, Vol 24, pp. 169–181, 2008. [19] Ö. Civalek, “A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates”, Applied Mathematical Modelling, Vol 33, pp. 300–314, 2009. [20] A. Seçgin, A. Saide Sarıgül, "A novel scheme for the discrete prediction of high-frequency vibration response: Discrete singular convolution– mode superposition approach", Journal of Sound and Vibration, doi:10.1016/j.jsv.2008.08.031 [21] S. Y. Yang, Y. C. Zhou, G. W. Wei, “Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations”, Computer Physics Communications, Vol 143, pp. 113–135, 2002. [22] Z. Shao, Z. Shen, "A Generalized Higher Order Finite-Difference Time- Domain Method and Its Application in Guided-Wave Problems", IEEE Transactions on Microwave Theory and Techniques, Vol 51 (3), pp. 856–861, 2003. [23] Z. Shao, G. W. Wei, S. Zhao, "DSC time-domain solution of Maxwell's equations", Journal of Computational Physics, Vol 189, pp. 427–453, 2003. [24] D.A. Popov, D.V. Sushko, “Computation of singular convolutions”, Applied Problems of Radon Transform (Editör: Simon Gindikin) American Mathematical Society Translations, Series 2, Vol 162, pp. 43- 128, 1994. [25] C.E. Shannon, “Communication In The Presence Of Noise”, Proceedings of the IEEE, Vol 86 (2), pp. 447 – 457, 1998. [26] A.J. Jerri, “The Shannon sampling theorem—Its various extensions and applications: A tutorial review”, Proceedings of the IEEE, Vol 65 (11), pp.1565 – 1596, 1977.
There are 1 citations in total.

Details

Journal Section Articles
Authors

Bahadır Alyavuz

Publication Date January 15, 2009
Submission Date October 22, 2017
Published in Issue Year 2009 Volume: 1 Issue: 1

Cite

APA Alyavuz, B. (2009). Ayrık Tekil Konvolusyon Yöntemi ile İki Boyutlu Isı Probleminin MATLAB Ortamında Çözümü. International Journal of Engineering Research and Development, 1(1), 56-62.

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.