Research Article
BibTex RIS Cite

Experimental evaluation of performance for micro wind turbines by using permanent magnets

Year 2018, Volume: 10 Issue: 2, 60 - 68, 29.06.2018
https://doi.org/10.29137/umagd.349649

Abstract



Permanent
magnet synchronous generators with interior rotor (IR-PMSGs) have been widely
preferred in micro wind turbines (MWTs). Customers demand high output power of
the MWTs. Therefore, in this study, performance analyses and optimizations of
two IR-PMSG rotors were practically carried out to increase the output power of
the MWTs by employing N35 and N42 Neodymium-Iron-Boron (NdFeB) permanent
magnets (PMs) with same geometry used on IR-PMSG rotor surfaces. For this
purpose, two IR-PMSG rotors were designed with same geometry and applied to a
pole shifting reduction technique to decrease their cogging torque on the
IR-PMSGs as well. According to the obtained results, comparing the performances
of the IR-PMSGs with both N35 and N42 NdFeB PMs on a MWT with regards to their
power coefficients, an increase of 18.6% in power coefficient of the IR-PMSG
with N42 NdFeB PMs was calculated.



References

  • Ani, S. O., Polinder, H. & JFerreira, A.. (2013). Comparison of energy yield of small wind turbines in low wind speed areas. IEEE Trans. Sustainable Energy, 4(1): 42–49. doi:10.1109/TSTE.2012.2197426.
  • Bianchini, C., Davoli, M. Immovilli, F. & Lorenzani, E. (2014). Design optimization for torque ripple minimization and poles cost reduction with hybrid permanent magnets’. In: IEEE 40th Annual Conf. of Industrial Electronics Society (IECON) Conference 29 October-1 November 2014, Dallas, TX, USA, pp. 483-489.
  • Chung, D. W., & You, Y. M. (2015). Cogging torque reduction in permanent-magnet brushless generators for small wind turbines. Journal of Magnetics 20 (2): 176–185. doi:10.4283/JMAG.2015.20.2.176.
  • Coey, J. M. D. (2012). Permanent magnets: Plugging the gap. Scripta Materialia, 67(6): 524–529. doi:10.1016/j.scriptamat.2012.04.036.
  • Daili, Y., Gaubert, J. P. & Rahmani, L. (2015). Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors. Energy Conversion and Management 97: 298–306. doi:10.1016/j.enconman.2015.03.062.
  • Dosiek, L., & Pillay, P.2007. Cogging torque reduction in permanent magnet machines. IEEE Trans. Industry Applications, 43 (6): 1565–1571. doi:10.1109/TIA.2007.908160.
  • Hostettler, J., & Wang, X. (2015). Sliding mode control of a permanent magnet synchronous generator for variable speed wind energy conversion systems. Systems Science & Control Engineering, 3(1): 453–459. doi:10.1080/21642583.2015.1082513.
  • İskender, İ., & Genç, N. (2009). Investigation of wind turbine driven double output induction generator and obtaining its maximum power using fuzzy logic control method. Journal of The Faculty of Engineering and Architecture of Gazi University, 24(2): 343–350.
  • Islam, R., Husain, I., Fardoun, A. & McLaughlin, K. (2009). Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Industry Applications, 45(1): 152–160. doi:10.1109/TIA.2008.2009653.
  • Kim, H. J., Kim, D. Y. & Hong, J. P. (2014). Structure of concentrated-flux-type interior permanent-magnet synchronous motors using ferrite permanent magnets. IEEE Trans. Magnetics, 50(11): 1–4. doi:10.1109/TMAG.2014.2323818.
  • Kim, J. W., Kim, S. H., Song, S. Y. & Kim, Y. D. (2013). Nd–Fe–B permanent magnets fabricated by low temperature sintering process. Journal of Alloys and Compounds, 551: 180–184. doi.10.1016/j.jallcom.2012.10.058.
  • Lebsir, A., Bentounsi, A., Benbouzid, M. & Mangel, H. (2015). Electric generators fitted to wind turbine systems: An up-to-date comparative study. Journal of Electrical Systems, 11(3): 281–295.
  • Liu, C., Zhu, J., Wang, Y., Lei, G., Guo, Y. & Liu, X. (2014). A low-cost permanent magnet synchronous motor with SMC and ferrite PM. In: 17th International Conf. on Electrical Machines and Systems (ICEMS) Conference, 22–25 October 2014, Hangzhou, China, pp. 397-400.
  • Löewe, K., Brombacher, C., Katter, M. & Gutfleisch, O. (2015). Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets. Acta Materialia, 83: 248-288. doi:10.1016/j.actamat.2014.09.039.
  • Mamur, H. (2015a). Design, application, and power performance analyses of a micro wind turbine. Turkish Journal of Electrical Engineering & Computer Science, 23(6): 1619–1637. doi:10.3906/elk-1401-174.
  • Mamur, H. (2015b). Comparison of cogging torque reduction methods for micro wind turbines using permanent magnet synchronous generator. In: Unitech 2015 International Scientific Conference, 20–21 Nov. 2015, Gabrovo, Bulgaria, pp. 63-67.
  • Mamur, H. (2016). Performance evaluation for a permanent magnet synchronous generator with interior rotor of N35 and N42 NdFeB permanent magnets having same geometry in small wind turbines. International Journal of Energy Applications and Technology 3(2): 50-54.
  • Mamur, H., Ari, M., Korkmaz, F. & Topaloglu, I. (2013). The importance of supervisory control and data acquisition systems for wind turbines. In: Unitech 2013 International Scientific Conference, 22–23 November 2013; Gabrovo, Bulgaria. pp. 121-126.
  • Mamur, H., Ari, M., Korkmaz, F., Topaloglu, I., Cicek, A. & Bektas, E. (2015). Micro wind turbines and power performance analyses. In: Unitech 2015 International Scientific Conference, 20–21 November 2015; Gabrovo, Bulgaria, pp. 59-62.
  • Mamur, H., Bektaş, E., Cicek, A., Korkmaz, F., Topaloglu, I, & Ari, M. (2017). Application of wind monitoring system based on programmable logic controller. KU International Journal of Engineering Research and Development, 9(2): 33-42.
  • Mamur, H., Topaloglu, I., Korkmaz, F., Ari, M. & Atacak, I. (2014). Design and experimental analysis for reduction of cogging torque by pole shifting in permanent magnet synchronous generator. Elektronika ir Elektrotechnika, 20(8): 39–43.
  • McFarland, J. D., Jahns, T. M., El-Refaie, A. M. & Reddy, P. B. (2014). Effect of magnet properties on power density and flux-weakening performance of high-speed interior permanent magnet synchronous machines. In: IEEE Energy Conversion Congress and Exposition (ECCE) Conference, 14–18 September 2014, Pittsburgh, PA, USA, pp. 4218-4225.
  • Petrow, I., & Pyrhönen, J. (2013). Performance of low-cost permanent magnet material in PM synchronous machines. IEEE Trans. Industrial Electronics, 60(6): 2131–2138. doi:10.1109/TIE.2012.2191757.
  • Pyrhönen, J., Ruoho, S., Nerg, J., Paju, M., Tuominen, S., Kankaanpää, H., Stern, R., Boglietti, A. & Uzhegov, N. (2015). Hysteresis losses in sintered NdFeB permanent magnets in rotating electrical machines. IEEE Trans. Industrial Electronics, 62(2): 857–865. doi:10.1109/TIE.2014.2354597.
  • Sergeant, P., & Van den Bossche, A. P. (2014). Influence of the amount of permanent-magnet material in fractional-slot permanent-magnet synchronous machines. IEEE Trans. Industrial Electronics, 61 (9): 4979–4989. doi:10.1109/TIE.2013.2258310.
  • Skomski, R., Manchanda, P., Kumar, P., Balamurugan, B., Kashyap, A. & Sellmyer, D. J. (2013). Predicting the future of permanent-magnet materials. IEEE Trans. Magnetics, 49(7): 3215-3220. doi:10.1109/TMAG.2013.2248139.
  • Slusarek, B., Kapelski, D., Antal, L., Zalas, P. & Gwoździewicz, M. (2014). Synchronous motor with hybrid permanent magnets on the rotor. Sensors, 14(7): 12425–12436. doi:10.3390/s140712425.
  • Tarimer, I., & Ocak C. (2009). Performance comparision of internal and external rotor structured wind generators mounted from same permanent magnets on same geometry. Elektronika ir Elektrotechnika, 92(4): 65–70.
  • Tripathi, S. M., Tiwari, S. M. & Singh, D. (2015). Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review. Renewable and Sustainable Energy Reviews, 51: 1288–1305. doi:10.1016/j.rser.2015.06.060.
  • Vaimann, T., Kallaste, A., Kilk, A. & Belahcen, A. (2013). Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines. In: IEEE Africon Conference, 9–12 September 2013, Pointe-Aux-Piments, Mauritius, pp. 1-5.
  • Yağmur, A. & Çam, E. (2017). Implementation of feasibility analysis of wind and solar energy on the web base. KU International Journal of Engineering Research and Development, 9(1): 1-10.
  • Yıldırız, E., & Aydemir, M. T. (2009). Analysis, design and implementation of an axial flux, permanent magnet machine to be used in a low power wind generator. Journal of The Faculty of Engineering and Architecture of Gazi University, 24(3): 525–531.
  • Zhang, S., Xu, J., Junak, J., Fiederling, D., Sawczuk, G., Koch, M., Schalja, A., Podack, M. & Baumgartner, J. (2012). Permanent magnet technology for electric motors in automotive applications. In: IEEE II. Electric Drives Production Conference (EDPC), 15–18 October 2012, Nuremberg, Germany, pp. 1-11.
Year 2018, Volume: 10 Issue: 2, 60 - 68, 29.06.2018
https://doi.org/10.29137/umagd.349649

Abstract

References

  • Ani, S. O., Polinder, H. & JFerreira, A.. (2013). Comparison of energy yield of small wind turbines in low wind speed areas. IEEE Trans. Sustainable Energy, 4(1): 42–49. doi:10.1109/TSTE.2012.2197426.
  • Bianchini, C., Davoli, M. Immovilli, F. & Lorenzani, E. (2014). Design optimization for torque ripple minimization and poles cost reduction with hybrid permanent magnets’. In: IEEE 40th Annual Conf. of Industrial Electronics Society (IECON) Conference 29 October-1 November 2014, Dallas, TX, USA, pp. 483-489.
  • Chung, D. W., & You, Y. M. (2015). Cogging torque reduction in permanent-magnet brushless generators for small wind turbines. Journal of Magnetics 20 (2): 176–185. doi:10.4283/JMAG.2015.20.2.176.
  • Coey, J. M. D. (2012). Permanent magnets: Plugging the gap. Scripta Materialia, 67(6): 524–529. doi:10.1016/j.scriptamat.2012.04.036.
  • Daili, Y., Gaubert, J. P. & Rahmani, L. (2015). Implementation of a new maximum power point tracking control strategy for small wind energy conversion systems without mechanical sensors. Energy Conversion and Management 97: 298–306. doi:10.1016/j.enconman.2015.03.062.
  • Dosiek, L., & Pillay, P.2007. Cogging torque reduction in permanent magnet machines. IEEE Trans. Industry Applications, 43 (6): 1565–1571. doi:10.1109/TIA.2007.908160.
  • Hostettler, J., & Wang, X. (2015). Sliding mode control of a permanent magnet synchronous generator for variable speed wind energy conversion systems. Systems Science & Control Engineering, 3(1): 453–459. doi:10.1080/21642583.2015.1082513.
  • İskender, İ., & Genç, N. (2009). Investigation of wind turbine driven double output induction generator and obtaining its maximum power using fuzzy logic control method. Journal of The Faculty of Engineering and Architecture of Gazi University, 24(2): 343–350.
  • Islam, R., Husain, I., Fardoun, A. & McLaughlin, K. (2009). Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Industry Applications, 45(1): 152–160. doi:10.1109/TIA.2008.2009653.
  • Kim, H. J., Kim, D. Y. & Hong, J. P. (2014). Structure of concentrated-flux-type interior permanent-magnet synchronous motors using ferrite permanent magnets. IEEE Trans. Magnetics, 50(11): 1–4. doi:10.1109/TMAG.2014.2323818.
  • Kim, J. W., Kim, S. H., Song, S. Y. & Kim, Y. D. (2013). Nd–Fe–B permanent magnets fabricated by low temperature sintering process. Journal of Alloys and Compounds, 551: 180–184. doi.10.1016/j.jallcom.2012.10.058.
  • Lebsir, A., Bentounsi, A., Benbouzid, M. & Mangel, H. (2015). Electric generators fitted to wind turbine systems: An up-to-date comparative study. Journal of Electrical Systems, 11(3): 281–295.
  • Liu, C., Zhu, J., Wang, Y., Lei, G., Guo, Y. & Liu, X. (2014). A low-cost permanent magnet synchronous motor with SMC and ferrite PM. In: 17th International Conf. on Electrical Machines and Systems (ICEMS) Conference, 22–25 October 2014, Hangzhou, China, pp. 397-400.
  • Löewe, K., Brombacher, C., Katter, M. & Gutfleisch, O. (2015). Temperature-dependent Dy diffusion processes in Nd–Fe–B permanent magnets. Acta Materialia, 83: 248-288. doi:10.1016/j.actamat.2014.09.039.
  • Mamur, H. (2015a). Design, application, and power performance analyses of a micro wind turbine. Turkish Journal of Electrical Engineering & Computer Science, 23(6): 1619–1637. doi:10.3906/elk-1401-174.
  • Mamur, H. (2015b). Comparison of cogging torque reduction methods for micro wind turbines using permanent magnet synchronous generator. In: Unitech 2015 International Scientific Conference, 20–21 Nov. 2015, Gabrovo, Bulgaria, pp. 63-67.
  • Mamur, H. (2016). Performance evaluation for a permanent magnet synchronous generator with interior rotor of N35 and N42 NdFeB permanent magnets having same geometry in small wind turbines. International Journal of Energy Applications and Technology 3(2): 50-54.
  • Mamur, H., Ari, M., Korkmaz, F. & Topaloglu, I. (2013). The importance of supervisory control and data acquisition systems for wind turbines. In: Unitech 2013 International Scientific Conference, 22–23 November 2013; Gabrovo, Bulgaria. pp. 121-126.
  • Mamur, H., Ari, M., Korkmaz, F., Topaloglu, I., Cicek, A. & Bektas, E. (2015). Micro wind turbines and power performance analyses. In: Unitech 2015 International Scientific Conference, 20–21 November 2015; Gabrovo, Bulgaria, pp. 59-62.
  • Mamur, H., Bektaş, E., Cicek, A., Korkmaz, F., Topaloglu, I, & Ari, M. (2017). Application of wind monitoring system based on programmable logic controller. KU International Journal of Engineering Research and Development, 9(2): 33-42.
  • Mamur, H., Topaloglu, I., Korkmaz, F., Ari, M. & Atacak, I. (2014). Design and experimental analysis for reduction of cogging torque by pole shifting in permanent magnet synchronous generator. Elektronika ir Elektrotechnika, 20(8): 39–43.
  • McFarland, J. D., Jahns, T. M., El-Refaie, A. M. & Reddy, P. B. (2014). Effect of magnet properties on power density and flux-weakening performance of high-speed interior permanent magnet synchronous machines. In: IEEE Energy Conversion Congress and Exposition (ECCE) Conference, 14–18 September 2014, Pittsburgh, PA, USA, pp. 4218-4225.
  • Petrow, I., & Pyrhönen, J. (2013). Performance of low-cost permanent magnet material in PM synchronous machines. IEEE Trans. Industrial Electronics, 60(6): 2131–2138. doi:10.1109/TIE.2012.2191757.
  • Pyrhönen, J., Ruoho, S., Nerg, J., Paju, M., Tuominen, S., Kankaanpää, H., Stern, R., Boglietti, A. & Uzhegov, N. (2015). Hysteresis losses in sintered NdFeB permanent magnets in rotating electrical machines. IEEE Trans. Industrial Electronics, 62(2): 857–865. doi:10.1109/TIE.2014.2354597.
  • Sergeant, P., & Van den Bossche, A. P. (2014). Influence of the amount of permanent-magnet material in fractional-slot permanent-magnet synchronous machines. IEEE Trans. Industrial Electronics, 61 (9): 4979–4989. doi:10.1109/TIE.2013.2258310.
  • Skomski, R., Manchanda, P., Kumar, P., Balamurugan, B., Kashyap, A. & Sellmyer, D. J. (2013). Predicting the future of permanent-magnet materials. IEEE Trans. Magnetics, 49(7): 3215-3220. doi:10.1109/TMAG.2013.2248139.
  • Slusarek, B., Kapelski, D., Antal, L., Zalas, P. & Gwoździewicz, M. (2014). Synchronous motor with hybrid permanent magnets on the rotor. Sensors, 14(7): 12425–12436. doi:10.3390/s140712425.
  • Tarimer, I., & Ocak C. (2009). Performance comparision of internal and external rotor structured wind generators mounted from same permanent magnets on same geometry. Elektronika ir Elektrotechnika, 92(4): 65–70.
  • Tripathi, S. M., Tiwari, S. M. & Singh, D. (2015). Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review. Renewable and Sustainable Energy Reviews, 51: 1288–1305. doi:10.1016/j.rser.2015.06.060.
  • Vaimann, T., Kallaste, A., Kilk, A. & Belahcen, A. (2013). Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines. In: IEEE Africon Conference, 9–12 September 2013, Pointe-Aux-Piments, Mauritius, pp. 1-5.
  • Yağmur, A. & Çam, E. (2017). Implementation of feasibility analysis of wind and solar energy on the web base. KU International Journal of Engineering Research and Development, 9(1): 1-10.
  • Yıldırız, E., & Aydemir, M. T. (2009). Analysis, design and implementation of an axial flux, permanent magnet machine to be used in a low power wind generator. Journal of The Faculty of Engineering and Architecture of Gazi University, 24(3): 525–531.
  • Zhang, S., Xu, J., Junak, J., Fiederling, D., Sawczuk, G., Koch, M., Schalja, A., Podack, M. & Baumgartner, J. (2012). Permanent magnet technology for electric motors in automotive applications. In: IEEE II. Electric Drives Production Conference (EDPC), 15–18 October 2012, Nuremberg, Germany, pp. 1-11.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Murat Ari

Hayati Mamur

Publication Date June 29, 2018
Submission Date November 6, 2017
Published in Issue Year 2018 Volume: 10 Issue: 2

Cite

APA Ari, M., & Mamur, H. (2018). Experimental evaluation of performance for micro wind turbines by using permanent magnets. International Journal of Engineering Research and Development, 10(2), 60-68. https://doi.org/10.29137/umagd.349649

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.