Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Çaplara Sahip Dairesel Borularda Grafen Oksit (GO)-Saf Su Nanoakışkanı Kullanımının Isı Transferi Artışı Üzerindeki Etkisinin Deneysel Olarak İncelenmesi

Yıl 2019, Cilt: 11 Sayı: 1, 282 - 301, 31.01.2019
https://doi.org/10.29137/umagd.449657

Öz

Bu çalışmada, %0,01 hacimsel konsantrasyonlu
grafen oksit (GO)-saf su nanoakışkanının taşınım ısı transferi ve basınç düşüşü
artışı iç çapları 12 mm ve 16 mm olan, 1830 mm uzunluğa sahip sabit duvar ısı
akılı dairesel bakır düz borularda deneysel olarak incelenmiştir. Ayrıca,
çalışmada sayısal hesaplamalar tek fazlı akışkan kabulüyle Navier-Stokes ve
enerji denkleminin sonlu hacimler yöntemi olan ANSYS-FLUENT programı
kullanılarak çözülmesiyle üç boyutlu ve zamandan bağımsız olarak yapılmıştır.
Hacimsel debinin, ısı akısının ve boru çapının GO-saf su nanoakışkanının
taşınım ısı transfer katsayısı ve basınç düşüşü üzerindeki etkileri deneysel
olarak araştırılmış ve saf su için elde edilen ısı taşınım katsayısı değerleri
ilgili bağıntılardan elde edilen sonuçlarla karşılaştırılmıştır. Sonuçlar,
farklı çaplı borular için farklı debi ve ısı akısı değerlerinde ısı taşınım
katsayısı ve Nusselt sayısı değerlerinin değişimleri olarak sunulmuş ve ayrıca
boruların duvar yüzey sıcaklık ve ısı taşınım katsayısı değerlerinin
değişimleri sayısal ve deneysel karşılaştırmalı olarak incelenmiştir. Elde
edilen sonuçlar, nanoakışkanın h ve Nu sayısı değerlerinin hacimsel debi ve ısı
akısındaki artışla arttığını ve en yüksek artış değerlerine 16 mm iç çaplı
boruda ulaşıldığını göstermektedir. 16 mm iç çaplı boru için GO-saf su
nanoakışkanının ortalama ısı taşınım katsayısı artış değeri 1,5 L/dak.’ lık
debi (Re=1981) ve 3043,94 W/m2‘ lik 
(350 W) ısı akısı değerinde %34,88 olmaktadır. 

Kaynakça

  • Abreu, B., Lamas, B., Fonseca, A., Martins, N., Oliveira, M. S. A. (2014). Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions, Heat and Mass Transfer, 50(1), 65-74.
  • Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Ahadi, M., Sharif, F. (2014). Turbulent convective heat transfer and pressure drop of graphene-water nanofluid flowing inside a horizontal circular tube, Journal of Dispersion Science and Technology, 35(9), 1230-1240.
  • Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Sharif, F., Ahadi, M. (2016). Experimental investigation of laminar forced convective heat transfer of graphene water nanofluid inside a circular tube, International Journal of Thermal Science, 100, 316-323.
  • Azari, A., Kalbasi, M., Derakhshandeh, M., Rahimi, M. (2013). An experimental study on nanofluids convective heat transfer through a straight tube under constant heat flux, Chinese Journal of Chemical Engineering. 21, 1082-1088.
  • Azmi, V. H., Sharma, K. V., Sarma, P. K., Mamat, R., Anuar, S. (2014). Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts, International Journal of Thermal Science, 81, 84-93.
  • Azmi, V. H., Sharma, K. V., Sarma, P. K., Mamat, R., Najafi, G. (2014). Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube, International Communications Heat and Mass Transfer, 59, 30-38.
  • Awad, M. M., Muzychka, Y. S. (2008). Effective property models for homogeneous two phase flows, Experimental Thermal Fluid Science, 33(1), 106-113.
  • Baby, T. T., Ramapraphu, S. (2011). Enhanced convective heat transfer using graphene dispersed nanofluids, Nanoscale Research Letters, 6(289), 1-9.
  • Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene, Nano Letters, 8(3), 902-907.
  • Bianco, V., Chiacchio, F., Manca, O., Nardini, S. (2009). Numerical investigation of nanofluids forced convection in circular tubes, Applied Thermal Engineering, 29(17-18), 3632-3642.
  • Buongiorno, J. (2006). Convective transport in nanofluid, Journal of Heat Transfer, 128(3), 240-250.
  • Celeta, G. P., D’Annibale, F., Mariani, A., Saraceno, L., D’Amato, R., Bubbico, R. (2013). Heat transfer in water based SiC and TiO2 nanofluids, Heat Transfer Engineering, 34(13), 1060-1072.
  • Ding, Y., Alias, H., Wen, D., Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes, International Journal of Heat and Mass Transfer, 49, 240-250.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78 (6), 718-720.
  • Ebrahimnia-Bajestan, E., Niazmand, H., Duangthongsuk, W., Wongwises, S. (2011). Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime, International Journal of Heat and Mass Transfer, 54(19-20), 4376-4388.
  • Eravcu, F. (2016). Karbon Tabanlı Nanomalzemelerin Sentezi, Karakterizasyonu, Reolojisi, Isıl İletkenliği ve Kararlılığı, Yüksek Lisans Tezi, Cumhuriyet Üniversitesi, Sivas, 2016.
  • Escher, W., Brunschwiler, T., Shalkevich, N., Shalkevich, A., Burgi, T., Michel, B., Oulikakos, D. (2011). On the cooling of electronics with nanofluids, Journal of Heat Transfer, 133(5), 1-11.
  • FLUENT User's Guide, (2003). Fluent Inc, Lebanon, NH.
  • Gupte, S. K., Advani, S. G., Huq, P. (1995). Role of micro-convection due to non-affine motion of particles in amono-disperse suspension. International Journal of Heat and Mass Transfer, 38 (16), 2945-2958.
  • Ghozatloo, A., Rashidi, A., Niassar, M. S. (2014). Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal Fluid Science, 53, 136-141.
  • Ghozatloo, A., Rashidi, A., Shariaty-Niassar, M. (2014). Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal Fluid Science, 53, 136-141.
  • Gnielinski, V. (1976). New equations for heat transfer in turbulent pipe and channel flow, International Chemical Engineering, 16(2), 359-368.
  • Hajjar, Z., Rashidi, A., Ghozatloo, A. (2014). Enhanced thermal conductivities of graphene oxide nanofluids, International Communication Heat and Mass Transfer, 57, 128-131.
  • Hedayati, F., Domairry, G. (2016). Nanoparticle migration effects on fully developed forced convection of TiO2-water nanofluid in a parallel plate microchannel, Particuology, 24, 96-107.
  • Hong, K. S., Hong, T. K., Yang, H. S. (2006). Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Applied Physics Letters, 88, 1-3.
  • Hwan, L., Hwang, K., Janga, S., Lee, B., Kim, J., Choi, S. U. S., Choi, C. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, International Journal of Heat and Mass Transfer, 51, 2651-2656.
  • Izadi, M., Behzadmehr, A., Jalali-Vahid, D. (2009). Numerical study of developing laminar forced convection of a nanofluid in an annulus, International Journal of Thermal Science, 48, 2119-2129.
  • Karabulut, K., Yapıcı, K., Buyruk, E., Kılınc, F. (2015). Karbon nanotüp içeren nanoakışkanın ısı transferi artışı ve basınç düşüşü performansının deneysel ve sayısal olarak incelenmesi. 20. Ulusal Isı Bilimi ve Tekniği Kongresi, 96-105, 02-5 Eylül, Balıkesir.
  • Karabulut, K. (2015). Isı Değiştiricilerde Isı Aktarımının Nanoakışkanlar Kullanılarak Arttırılması, Doktora Tezi, Cumhuriyet Üniversitesi, Sivas.
  • Keblinski, P., Prasher, R., Eapen, J. (2008). Thermal conductance of nanofluid: is the controversy over?, Journal of Nanoparticle Research, 10(7), 1089-1097.
  • Kim, S. J., Bang, I. J., Buongiorno, J., Hu, L.W. (2007). Surface wettability change during pool boiling ofnanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, 50 (133), 4105-4116.
  • Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., You, S. M. (2010). Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, 53 (5-6), 972-981.
  • Maxwell, J.C. (1904). A treatise on electricity and magnetism (2nd ed.). Oxford Clarendon Press, Cambridge,England.
  • Mikkola, V., Puupponen, S., Granbohm, H., Saari, K., Ala-Nissira, T., Seppela, A. (2018). Influence of particle properties on convective heat transfer of nanofluids, International Journal of Thermal Science, 124, 187-195.
  • Moghari, R. M., Talebi, F., Rafee, R., Shariat, M. (2015). Numerical study of pressure drop and thermal characteristics of Al2O3-water nanofluid flow in horizontal annulus, Heat Transfer Engineering, 36(2), 166-177.
  • Mojarrad, M. S., Keshavarz, A., Ziabasharhagh, M., Raznahan, M. M. (2014). Experimental investigation on heat transfer enhancement of alumina/water and alumina/water–ethylene glycol nanofluids in thermally developing laminar flow, Experimental Thermal Fluid Science, 53, 111-118.
  • Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. K. I., Dubonos, S., Firsov, A. (2005). Two-dimensional gas of massless dirac fermions in graphene, Nature, 438, 197-200.
  • Pak, B. C., Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11(2), 151-170.
  • Ranjbarzadeh, R., Karimipour, A., Afrand, M., Homayoon, A., Isfahani, M., Shirneshan, A. (2017). Emprical analysis of heat and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe, Applied Thermal Engineering, 126, 538-547.
  • Rea, U., McKrell, T., Hu, L.W., Buongiorno, J. (2009). Laminar convective heat transfer and viscous pressure loss of alümina-water and zirconia-water nanofluids. International Journal of Heat and Mass Transfer, 52(7-8), 2042-2048.
  • Shanbedi, M., Heris, S. Z., Baniadam, M., Amiri, A., Maghrebi, M. (2012). Investigation of heat transfer characterization of eda-mwcnt/di-water nanofluid in a two phase closed thermosyphon, Industrial & Engineering Chemistry Research, 51(3), 1423-1428.
  • Shah, R. K. (1975). Thermal entry length solutions for the circular tube and parallel plates, 3rd National Heat Mass Transfer Conference, 11-13 December, Bombay-India.
  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S., Seal, S. (2011). Graphene based materials: past, present and future, Progress In Materials Science, 56, 1178-1271.
  • Sundar, L. S., Kumar, N. T. R., Naik, M. T. (2012). Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube, International Journal of Heat and Mass Transfer, 55, 2761-2768.
  • Suresh, S., Venkitaraj, K. P., Selvakumar, P., Chandrasekar, M. (2012). Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer, Experimental Thermal Fluid Science, 38, 54-60.
  • Sadeghinezhad, E., Togun, H., Mehrali, M., Nejad, P. S., Latibari, S. T., Abdulrazzaq, T., Kazi, S. N., Metselaar, H. S. C. (2015). An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions, International Journal of Heat and Mass Transfer, 81, 41-51.
  • Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S. N., Sadeghinezhad, E., Zubir, N. (2014). An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes, Nanoscale Research Letters, 9(1), 151.
  • Trisaksri, V., & Wongwises, S. (2007). Critical review of heat transfer characteristics of nanofluids. Renewableand Sustainable Energy Reviews, 11(3), 512-523.
  • Turgut, A., Saglanmak, S., Doganay, S. (2016). Experimental investigation on thermal conductivity and viscosity of nanofluids: particle size effect, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(1), 95-103.
  • Wang, J., Zhu, J., Zhang, X., Chen, Y. (2013). Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows, Experimental Thermal Fluid Science, 44, 716-721.
  • Wang, X., Xu, X., Choi, S. U. S. (1999). Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermophysics and Heat Transfer, 13, 474-480.
  • William, S., Hummers, J. R., Richard, E. O. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339.
  • Xie, H., Lee, H., Youn, W., Choi, M. (2003). Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applid Physics, 94(8), 4967-4971.
  • Yu, W., Xie, H., Wang, X. (2011). Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Physics Letters A, 375, 1323-1328.
  • Yarmand, H., Gharehkhani, S., Kazi, S. N., Sadeghınezhad, E., Safaei, M. R. (2014). Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid, Scientific World Journal, 1-9, Article ID 3695939.
  • Zheng, R., Gao, J., Wang, J., Feng, S. P., Ohtani, H., Wang, J., Chen, G. (2011). Thermal percolation in stable graphite suspensions, Nano Letters, 9(1), 188-192.

Experimental Investigation of the Effect of Graphene Oxide (GO)-Distilled Water Nanofluid Usage on Heat Transfer Increment In Circular Tubes Having Different Diameters

Yıl 2019, Cilt: 11 Sayı: 1, 282 - 301, 31.01.2019
https://doi.org/10.29137/umagd.449657

Öz

In this study, increment of convective heat
transfer and pressure drop of graphene oxide (GO)-distilled water nanofluid
with volumetric concentration of 0,01% in circular copper straight tubes having
inner diameters of 12 mm and 16 mm, length of 1830 mm and with constant wall
heat flux was experimentally investigated. 
In addition, numerical calculations were performed as three-dimensional
and steady by solving Navier-Stokes and energy equation using ANSYS-FLUENT
program which is the finite volumes method with the assuming of single phase
fluid. The effects of volumetric flow rate, heat flux and diameter of the tube
were experimentally researched on the convective heat transfer coefficient and
the pressure drop of the GO-distilled water nanofluid and the obtained values
of convective heat transfer coefficient for the distilled water were compared
with determined results from corresponding correlations. Results were presented
as the variation of convective heat transfer coefficient and Nu number values
at the values of different flow rates and heat fluxes for different tube
diameters. And also, the variations of wall surface temperature and convective
heat transfer coefficient values of the tubes were examined as numerical and
experimental comparison. The obtained results showed that h and Nusselt number
values of nanofluid increased with increasing of volumetric flow rate and heat
flux and the highest increment values were reached at the pipe with 16 mm inner
diameter. The increment value of average convective heat transfer coefficient
of the GO-distilled water nanofluid was 34,88% at the flow rate of 1,5 L/min.
(Re=1981) and the heat flux of 3043,94 W/m2 (350 W) for the tube with 16 mm
inner diameter.

Kaynakça

  • Abreu, B., Lamas, B., Fonseca, A., Martins, N., Oliveira, M. S. A. (2014). Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions, Heat and Mass Transfer, 50(1), 65-74.
  • Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Ahadi, M., Sharif, F. (2014). Turbulent convective heat transfer and pressure drop of graphene-water nanofluid flowing inside a horizontal circular tube, Journal of Dispersion Science and Technology, 35(9), 1230-1240.
  • Akhavan-Zanjani, H., Saffar-Avval, M., Mansourkiaei, M., Sharif, F., Ahadi, M. (2016). Experimental investigation of laminar forced convective heat transfer of graphene water nanofluid inside a circular tube, International Journal of Thermal Science, 100, 316-323.
  • Azari, A., Kalbasi, M., Derakhshandeh, M., Rahimi, M. (2013). An experimental study on nanofluids convective heat transfer through a straight tube under constant heat flux, Chinese Journal of Chemical Engineering. 21, 1082-1088.
  • Azmi, V. H., Sharma, K. V., Sarma, P. K., Mamat, R., Anuar, S. (2014). Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts, International Journal of Thermal Science, 81, 84-93.
  • Azmi, V. H., Sharma, K. V., Sarma, P. K., Mamat, R., Najafi, G. (2014). Heat transfer and friction factor of water based TiO2 and SiO2 nanofluids under turbulent flow in a tube, International Communications Heat and Mass Transfer, 59, 30-38.
  • Awad, M. M., Muzychka, Y. S. (2008). Effective property models for homogeneous two phase flows, Experimental Thermal Fluid Science, 33(1), 106-113.
  • Baby, T. T., Ramapraphu, S. (2011). Enhanced convective heat transfer using graphene dispersed nanofluids, Nanoscale Research Letters, 6(289), 1-9.
  • Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene, Nano Letters, 8(3), 902-907.
  • Bianco, V., Chiacchio, F., Manca, O., Nardini, S. (2009). Numerical investigation of nanofluids forced convection in circular tubes, Applied Thermal Engineering, 29(17-18), 3632-3642.
  • Buongiorno, J. (2006). Convective transport in nanofluid, Journal of Heat Transfer, 128(3), 240-250.
  • Celeta, G. P., D’Annibale, F., Mariani, A., Saraceno, L., D’Amato, R., Bubbico, R. (2013). Heat transfer in water based SiC and TiO2 nanofluids, Heat Transfer Engineering, 34(13), 1060-1072.
  • Ding, Y., Alias, H., Wen, D., Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes, International Journal of Heat and Mass Transfer, 49, 240-250.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Applied Physics Letters, 78 (6), 718-720.
  • Ebrahimnia-Bajestan, E., Niazmand, H., Duangthongsuk, W., Wongwises, S. (2011). Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime, International Journal of Heat and Mass Transfer, 54(19-20), 4376-4388.
  • Eravcu, F. (2016). Karbon Tabanlı Nanomalzemelerin Sentezi, Karakterizasyonu, Reolojisi, Isıl İletkenliği ve Kararlılığı, Yüksek Lisans Tezi, Cumhuriyet Üniversitesi, Sivas, 2016.
  • Escher, W., Brunschwiler, T., Shalkevich, N., Shalkevich, A., Burgi, T., Michel, B., Oulikakos, D. (2011). On the cooling of electronics with nanofluids, Journal of Heat Transfer, 133(5), 1-11.
  • FLUENT User's Guide, (2003). Fluent Inc, Lebanon, NH.
  • Gupte, S. K., Advani, S. G., Huq, P. (1995). Role of micro-convection due to non-affine motion of particles in amono-disperse suspension. International Journal of Heat and Mass Transfer, 38 (16), 2945-2958.
  • Ghozatloo, A., Rashidi, A., Niassar, M. S. (2014). Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal Fluid Science, 53, 136-141.
  • Ghozatloo, A., Rashidi, A., Shariaty-Niassar, M. (2014). Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Experimental Thermal Fluid Science, 53, 136-141.
  • Gnielinski, V. (1976). New equations for heat transfer in turbulent pipe and channel flow, International Chemical Engineering, 16(2), 359-368.
  • Hajjar, Z., Rashidi, A., Ghozatloo, A. (2014). Enhanced thermal conductivities of graphene oxide nanofluids, International Communication Heat and Mass Transfer, 57, 128-131.
  • Hedayati, F., Domairry, G. (2016). Nanoparticle migration effects on fully developed forced convection of TiO2-water nanofluid in a parallel plate microchannel, Particuology, 24, 96-107.
  • Hong, K. S., Hong, T. K., Yang, H. S. (2006). Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Applied Physics Letters, 88, 1-3.
  • Hwan, L., Hwang, K., Janga, S., Lee, B., Kim, J., Choi, S. U. S., Choi, C. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, International Journal of Heat and Mass Transfer, 51, 2651-2656.
  • Izadi, M., Behzadmehr, A., Jalali-Vahid, D. (2009). Numerical study of developing laminar forced convection of a nanofluid in an annulus, International Journal of Thermal Science, 48, 2119-2129.
  • Karabulut, K., Yapıcı, K., Buyruk, E., Kılınc, F. (2015). Karbon nanotüp içeren nanoakışkanın ısı transferi artışı ve basınç düşüşü performansının deneysel ve sayısal olarak incelenmesi. 20. Ulusal Isı Bilimi ve Tekniği Kongresi, 96-105, 02-5 Eylül, Balıkesir.
  • Karabulut, K. (2015). Isı Değiştiricilerde Isı Aktarımının Nanoakışkanlar Kullanılarak Arttırılması, Doktora Tezi, Cumhuriyet Üniversitesi, Sivas.
  • Keblinski, P., Prasher, R., Eapen, J. (2008). Thermal conductance of nanofluid: is the controversy over?, Journal of Nanoparticle Research, 10(7), 1089-1097.
  • Kim, S. J., Bang, I. J., Buongiorno, J., Hu, L.W. (2007). Surface wettability change during pool boiling ofnanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, 50 (133), 4105-4116.
  • Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., You, S. M. (2010). Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, 53 (5-6), 972-981.
  • Maxwell, J.C. (1904). A treatise on electricity and magnetism (2nd ed.). Oxford Clarendon Press, Cambridge,England.
  • Mikkola, V., Puupponen, S., Granbohm, H., Saari, K., Ala-Nissira, T., Seppela, A. (2018). Influence of particle properties on convective heat transfer of nanofluids, International Journal of Thermal Science, 124, 187-195.
  • Moghari, R. M., Talebi, F., Rafee, R., Shariat, M. (2015). Numerical study of pressure drop and thermal characteristics of Al2O3-water nanofluid flow in horizontal annulus, Heat Transfer Engineering, 36(2), 166-177.
  • Mojarrad, M. S., Keshavarz, A., Ziabasharhagh, M., Raznahan, M. M. (2014). Experimental investigation on heat transfer enhancement of alumina/water and alumina/water–ethylene glycol nanofluids in thermally developing laminar flow, Experimental Thermal Fluid Science, 53, 111-118.
  • Novoselov, K., Geim, A. K., Morozov, S., Jiang, D., Grigorieva, M. K. I., Dubonos, S., Firsov, A. (2005). Two-dimensional gas of massless dirac fermions in graphene, Nature, 438, 197-200.
  • Pak, B. C., Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, 11(2), 151-170.
  • Ranjbarzadeh, R., Karimipour, A., Afrand, M., Homayoon, A., Isfahani, M., Shirneshan, A. (2017). Emprical analysis of heat and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe, Applied Thermal Engineering, 126, 538-547.
  • Rea, U., McKrell, T., Hu, L.W., Buongiorno, J. (2009). Laminar convective heat transfer and viscous pressure loss of alümina-water and zirconia-water nanofluids. International Journal of Heat and Mass Transfer, 52(7-8), 2042-2048.
  • Shanbedi, M., Heris, S. Z., Baniadam, M., Amiri, A., Maghrebi, M. (2012). Investigation of heat transfer characterization of eda-mwcnt/di-water nanofluid in a two phase closed thermosyphon, Industrial & Engineering Chemistry Research, 51(3), 1423-1428.
  • Shah, R. K. (1975). Thermal entry length solutions for the circular tube and parallel plates, 3rd National Heat Mass Transfer Conference, 11-13 December, Bombay-India.
  • Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S., Seal, S. (2011). Graphene based materials: past, present and future, Progress In Materials Science, 56, 1178-1271.
  • Sundar, L. S., Kumar, N. T. R., Naik, M. T. (2012). Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube, International Journal of Heat and Mass Transfer, 55, 2761-2768.
  • Suresh, S., Venkitaraj, K. P., Selvakumar, P., Chandrasekar, M. (2012). Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer, Experimental Thermal Fluid Science, 38, 54-60.
  • Sadeghinezhad, E., Togun, H., Mehrali, M., Nejad, P. S., Latibari, S. T., Abdulrazzaq, T., Kazi, S. N., Metselaar, H. S. C. (2015). An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions, International Journal of Heat and Mass Transfer, 81, 41-51.
  • Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S. N., Sadeghinezhad, E., Zubir, N. (2014). An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes, Nanoscale Research Letters, 9(1), 151.
  • Trisaksri, V., & Wongwises, S. (2007). Critical review of heat transfer characteristics of nanofluids. Renewableand Sustainable Energy Reviews, 11(3), 512-523.
  • Turgut, A., Saglanmak, S., Doganay, S. (2016). Experimental investigation on thermal conductivity and viscosity of nanofluids: particle size effect, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(1), 95-103.
  • Wang, J., Zhu, J., Zhang, X., Chen, Y. (2013). Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows, Experimental Thermal Fluid Science, 44, 716-721.
  • Wang, X., Xu, X., Choi, S. U. S. (1999). Thermal conductivity of nanoparticle-fluid mixture, Journal of Thermophysics and Heat Transfer, 13, 474-480.
  • William, S., Hummers, J. R., Richard, E. O. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339.
  • Xie, H., Lee, H., Youn, W., Choi, M. (2003). Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applid Physics, 94(8), 4967-4971.
  • Yu, W., Xie, H., Wang, X. (2011). Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Physics Letters A, 375, 1323-1328.
  • Yarmand, H., Gharehkhani, S., Kazi, S. N., Sadeghınezhad, E., Safaei, M. R. (2014). Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid, Scientific World Journal, 1-9, Article ID 3695939.
  • Zheng, R., Gao, J., Wang, J., Feng, S. P., Ohtani, H., Wang, J., Chen, G. (2011). Thermal percolation in stable graphite suspensions, Nano Letters, 9(1), 188-192.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Koray Karabulut

Ertan Buyruk Bu kişi benim

Ferhat Kılınç

Yayımlanma Tarihi 31 Ocak 2019
Gönderilme Tarihi 31 Temmuz 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 11 Sayı: 1

Kaynak Göster

APA Karabulut, K., Buyruk, E., & Kılınç, F. (2019). Farklı Çaplara Sahip Dairesel Borularda Grafen Oksit (GO)-Saf Su Nanoakışkanı Kullanımının Isı Transferi Artışı Üzerindeki Etkisinin Deneysel Olarak İncelenmesi. International Journal of Engineering Research and Development, 11(1), 282-301. https://doi.org/10.29137/umagd.449657
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.