Classifying White Blood Cells Using Machine Learning Algorithms
Year 2019,
Volume: 11 Issue: 1, 141 - 152, 31.01.2019
Abdullah Elen
,
M. Kamil Turan
Abstract
Blood and its components have an important place in human life and are the best indicator tool in determining many pathological conditions. In particular, the classification of white blood cells is of great importance for the diagnosis of hematological diseases. In this study, 350 microscopic blood smear images were tested with 6 different machine learning algorithms for the classification of white blood cells and their performances were compared. 35 different geometric and statistical (texture) features have been extracted from blood images for training and test parameters of machine learning algorithms. According to the results, the Multinomial Logistic Regression (MLR) algorithm performed better than the other methods with an average 95% test success. The MLR can be used for automatic classification of white blood cells. It can be used especially as a source for diagnosis of diseases for hematologists and internal medicine specialists.
References
- Adjouadi, M., Zong, N. & Ayala, M. (2005). Multidimensional Pattern Recognition and Classification of White Blood Cells Using Support Vector Machines. Particle & Particle Systems Characterization, 22(2): pp. 107-118.
- Arı, E., & Yıldız, Z. (2013). Parallel Lines Assumption in Ordinal Logistic Regression and Analysis Approaches. International Interdisciplinary Journal of Scientific Research, 1(3): pp. 8-23.
- Avuçlu, E., & Başçiftçi, F. (2018). New approaches to determine age and gender in image processing techniques using multilayer perceptron neural network. Applied Soft Computing, 70, pp. 157–168. doi:10.1016/j.asoc.2018.05.033
- Bikhet, S. F., Darwish, A. M., Tolba, H. A. & Shaheen, S. I. (2000). Segmentation and classification of white blood cells. IEEE International Conference on Acoustics, Speech, and Signal Processing, İstanbul, pp. 2259-2261.
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1): pp. 5-32.
- Büyüköztürk, Ş., Çokluk Bökeoğlu, Ö. & Şekercioğlu, G. (2010). Sosyal Bilimler İçin Çok Değişkenli İstatistik SPSS ve LISREL Uygulamaları. Pegem Akademi Yayıncılık, Ankara, pp. 59-65.
- Cortes, C. & Vapnik, V. (1995). Support-Vector Network. Machine Learning, 20(3): pp. 273–297.
- Cover, T., & Hart, P. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, 13(1): 21-27.
- Elen, A. & Turan, M. K. (2018). A New Approach for Fully Automated Segmentation of Peripheral Blood Smears. International Journal of Advanced and Applied Sciences, 5(1): pp. 81-93.
- Ferri, M., Lombardini, S. & Pallotti, C. (1994). Leukocyte Classification by Size Functions. IEEE Workshop on Applications of Computer Vision, Sarasota, pp. 223-229.
- Habibzadeh, M., Krzyzak, A. & Fevens, T. (2013). Comparative study of shape, intensity and texture features and support vector machine for white blood cell classification. Journal of Theoretical and Applied Computer Science, 7 (1): pp. 20-35.
- Hiremath, P. S., Bannigidad, P. & Geeta, S. (2010). Automated Identification and Classification of White Blood Cells (Leukocytes) in Digital Microscopic Images. International Journal of Computer Applications, 2 (8): pp. 59-63.
- Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. (2013). Applied Logistic Regression 3rd Ed. Wiley&Sons, Canada, pp. 8-35.
- Jiang, Z. G., Fu, H. G. & Li, L. J. (2005). Support Vector Machine for Mechanical Faults Classification. Journal of Zhejiang University Science, 6 (5): pp. 433-439.
- Joshi, M. D., Karode, A. H. & Suralkar, S. R. (2013). White Blood Cells Segmentation and Classification to Detect Acute Leukemia. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 2(3): pp. 147-151.
- Kavzaoğlu, T. & Çölkesen, İ. (2010). Destek Vektör Makineleri ile Uydu Görüntülerinin Sınıflandırılmasında Kernel Fonksiyonlarının Etkilerinin İncelenmesi. Harita Dergisi, 2010(144): pp. 73-82.
- Ko, B. C., Gim, J. W. & Nam, J. Y. (2011). Cell image classification based on ensemble features and random forest. Electronics Letters, 47 (11): pp. 638-639.
- Krishna, P. R. & De, S. K. (2005). Naive-Bayes Classification using Fuzzy Approach. Third International Conference on Intelligent Sensing and Information Processing, Bangalore/India, pp. 61-64.
- Krishnan, A. & Sreekumar, K. (2014). A Survey on Image Segmentation and Feature Extraction Methods for Acute Myelogenous Leukemia Detection in Blood Microscopic Images. International Journal of Computer Science and Information Technologies, 5 (6): pp. 7877-7879.
- Krzyzak, A., Fevens, T., Habibzadeh, M. & Jelen, Ł. (2011). Application of Pattern Recognition Techniques for the Analysis of Histopathological Images. Advances in Intelligent and Soft Computing, Berlin/Germany, pp. 623-644.
- Leech, N. L., Barrett, K. C. & Morgan, G. A. (2004). SPSS For Intermediate Statistics: Use and Interpretation 2nd Ed. Lawrance Erlbaum Associates Publishers, New Jersey, pp. 109-110.
- Li, Q., Wang, Y., Liu, H., He, X., Xu, D., Wang, J. & Guo, F. (2014). Leukocyte cells identification and quantitative morphometry based on molecular hyperspectral imaging technology. Computerized Medical Imaging and Graphics, 38 (3): pp. 171-178.
- Maji, P., Mandal, A., Ganguly, M. & Saha, S. (2015). An Automated Method for Counting and Characterizing Red Blood Cells Using Mathematical Morphology. IEEE International Conference on Advances in Pattern Recognition, Kolkata, pp. 1-6.
- Orhan, U. & Adem, K. (2012). The Effects of Probability Factors in Naive Bayes Method. Elektrik-Elektronik ve Bilgisayar Mühendisliği Sempozyumu, Bursa, pp. 722-724.
- Osowski, S., Siroic, R., Markiewicz, T. & Siwek, K. (2009). Application of support vector machine and genetic algorithm for improved blood cell recognition. IEEE Transactions on Instrumentation and Measurement, 58(7): pp. 2159–2168.
- Osuna, E. E., Freund, R. & Girosi, F. (1997). Support Vector Machines: Training and Applications. Massachusetts Institute of Technology and Artificial Intelligence Laboratory Report, pp. 8-10.
- Pal, M. (2005). Random Forest Classifier for Remote Sensing Classification. Int. Journal of Remote Sensing, 26(1): pp. 217–222.
- Pandit, A., Kolhar, S. & Patil, P. (2015). Survey on Automatic RBC Detection and Counting. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4 (1): pp. 128-131.
- Ramesh, N., Dangott, B., Salama, M. E. & Tasdizen, T. (2012). Isolation and two-step classification of normal white blood cells in peripheral blood smears. Journal of Pathology Informatics, 3 (13): pp. 1-10.
- Ramoser, H., Laurain, V., Bischof, H. & Ecker, R. (2005). Leukocyte segmentation and classification in blood-smear images. IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, pp. 3371-3374.
- Rawat, J., Bhadauria, H. S., Singh, A. & Virmani, J. (2015). Review of leukocyte classification techniques for microscopic blood images. 2nd International Conference on Computing for Sustainable Global Development, New Delhi, pp. 1948-1954.
- Rodrigues, P., Ferreira, M. & Monteiro, J. (2008). Segmentation and Classification of Leukocytes Using Neural Networks: A Generalization Direction. Studies in Computational Intelligence, 83: pp. 373-396.
- Rosin, P. L. (2003). Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and App., 14(3): pp. 172-184.
- Sanei, S. & Lee, T. K. M. (2003). Cell Recognition Based on PCA and Bayesian Classification. 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, pp. 239-243.
- Saraswat, M. & Arya, K. V. (2014). Automated microscopic image analysis for leukocytes identification: A survey. Micron, 65 (2014): pp. 20-33.
- Saraswat, M. & Arya, K. V. (2014). Feature selection and classification of leukocytes using random forest. Medical & Biological Engineering & Computing, 52(12): pp. 1041-1052.
- Sarle, W. S. (1994). Neural Networks and Statistical Models. Proceedings of the Nineteenth Annual SAS Users Group International Conference, Texas, pp. 1-13.
- Sarrafzadeh, O., Rabbani, H., Talebi, A. & Yousefi-Banaem, H. (2014). Selection of the best features for leukocytes classification in blood smear microscopic images. Medical Imaging 2014: Digital Pathology, California, pp. 1-8.
- Soman, K. P., Loganathan, R. & Ajay, V. (2009). Machine learning with SVM and other kernel methods. PHI Learning Pvt. Ltd., Delhi/India, pp. 1-10.
- Sonar, S. C. & Bhagat, K. S. (2015). An Efficient Technique for White Blood Cells Nuclei Automatic Segmentation. International Journal of Scientific & Engineering Research, 6 (5): pp. 172-178.
- Su, M., Cheng, C. & Wang, P. (2014). A Neural-Network-Based Approach to White Blood Cell Classification. The Scientific World Journal, 2014: pp. 1-9.
- Tantikitti, S., Tumswadi, S. & Premchaiswadi, W. (2015). Image processing for detection of dengue virus based on WBC classification and decision tree. 13th International Conference on ICT and Knowledge Engineering, Bangkok, pp. 84-89.
- Theera-Umpon, N. & Dhompongsa, S. (2007). Morphological Granulometric Features of Nucleus in Automatic Bone Marrow White Blood Cell Classification. IEEE Transactions on Information Technology in Biomedicine, 11(3): pp. 353-359.
- Tomari, R., Wan Zakaria, Jamil, M.M.A., Nor, F.M., Fahran, N. & Fuad, N. (2014). Computer Aided System for Red Blood Cell Classification in Blood Smear Image. Procedia Computer Science, 42: pp. 206-213.
- Tuceryan, M. & Jain, A. K. (1998). In the Handbook of Pattern Recognition and Computer Vision 2nd Ed. Chen, C. H., Pau, L. F. and Wang, P. S. P., World Scientific Publishing Co., pp. 207-248.
- Venkatalakshmi, B. & Thilagavathi, K. (2013). Automatic Red Blood Cell Counting Using Hough Transform. IEEE Conference on Information & Communication Technologies (ICT), Thuckalay, pp. 267-271.
- Washington, S. P., Karlaftis, M. G. & Mannering, F. (2003). Statistical and Econometric Methods for Transportation Data Analysis 2nd Ed. Chapman and Hall/CRC, Boca Raton/FL, pp. 263-265.
- Xiong, W., Ong, S., Lim, J., Foong, K. W., Liu, J., Racoceanu, D., Chong, A. G. & Tan, K. S. (2010). Automatic Area Classification in Peripheral Blood Smears. IEEE Transactions on Biomedical Engineering, 57 (8): pp. 1982-1990.
Year 2019,
Volume: 11 Issue: 1, 141 - 152, 31.01.2019
Abdullah Elen
,
M. Kamil Turan
References
- Adjouadi, M., Zong, N. & Ayala, M. (2005). Multidimensional Pattern Recognition and Classification of White Blood Cells Using Support Vector Machines. Particle & Particle Systems Characterization, 22(2): pp. 107-118.
- Arı, E., & Yıldız, Z. (2013). Parallel Lines Assumption in Ordinal Logistic Regression and Analysis Approaches. International Interdisciplinary Journal of Scientific Research, 1(3): pp. 8-23.
- Avuçlu, E., & Başçiftçi, F. (2018). New approaches to determine age and gender in image processing techniques using multilayer perceptron neural network. Applied Soft Computing, 70, pp. 157–168. doi:10.1016/j.asoc.2018.05.033
- Bikhet, S. F., Darwish, A. M., Tolba, H. A. & Shaheen, S. I. (2000). Segmentation and classification of white blood cells. IEEE International Conference on Acoustics, Speech, and Signal Processing, İstanbul, pp. 2259-2261.
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1): pp. 5-32.
- Büyüköztürk, Ş., Çokluk Bökeoğlu, Ö. & Şekercioğlu, G. (2010). Sosyal Bilimler İçin Çok Değişkenli İstatistik SPSS ve LISREL Uygulamaları. Pegem Akademi Yayıncılık, Ankara, pp. 59-65.
- Cortes, C. & Vapnik, V. (1995). Support-Vector Network. Machine Learning, 20(3): pp. 273–297.
- Cover, T., & Hart, P. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, 13(1): 21-27.
- Elen, A. & Turan, M. K. (2018). A New Approach for Fully Automated Segmentation of Peripheral Blood Smears. International Journal of Advanced and Applied Sciences, 5(1): pp. 81-93.
- Ferri, M., Lombardini, S. & Pallotti, C. (1994). Leukocyte Classification by Size Functions. IEEE Workshop on Applications of Computer Vision, Sarasota, pp. 223-229.
- Habibzadeh, M., Krzyzak, A. & Fevens, T. (2013). Comparative study of shape, intensity and texture features and support vector machine for white blood cell classification. Journal of Theoretical and Applied Computer Science, 7 (1): pp. 20-35.
- Hiremath, P. S., Bannigidad, P. & Geeta, S. (2010). Automated Identification and Classification of White Blood Cells (Leukocytes) in Digital Microscopic Images. International Journal of Computer Applications, 2 (8): pp. 59-63.
- Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. (2013). Applied Logistic Regression 3rd Ed. Wiley&Sons, Canada, pp. 8-35.
- Jiang, Z. G., Fu, H. G. & Li, L. J. (2005). Support Vector Machine for Mechanical Faults Classification. Journal of Zhejiang University Science, 6 (5): pp. 433-439.
- Joshi, M. D., Karode, A. H. & Suralkar, S. R. (2013). White Blood Cells Segmentation and Classification to Detect Acute Leukemia. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 2(3): pp. 147-151.
- Kavzaoğlu, T. & Çölkesen, İ. (2010). Destek Vektör Makineleri ile Uydu Görüntülerinin Sınıflandırılmasında Kernel Fonksiyonlarının Etkilerinin İncelenmesi. Harita Dergisi, 2010(144): pp. 73-82.
- Ko, B. C., Gim, J. W. & Nam, J. Y. (2011). Cell image classification based on ensemble features and random forest. Electronics Letters, 47 (11): pp. 638-639.
- Krishna, P. R. & De, S. K. (2005). Naive-Bayes Classification using Fuzzy Approach. Third International Conference on Intelligent Sensing and Information Processing, Bangalore/India, pp. 61-64.
- Krishnan, A. & Sreekumar, K. (2014). A Survey on Image Segmentation and Feature Extraction Methods for Acute Myelogenous Leukemia Detection in Blood Microscopic Images. International Journal of Computer Science and Information Technologies, 5 (6): pp. 7877-7879.
- Krzyzak, A., Fevens, T., Habibzadeh, M. & Jelen, Ł. (2011). Application of Pattern Recognition Techniques for the Analysis of Histopathological Images. Advances in Intelligent and Soft Computing, Berlin/Germany, pp. 623-644.
- Leech, N. L., Barrett, K. C. & Morgan, G. A. (2004). SPSS For Intermediate Statistics: Use and Interpretation 2nd Ed. Lawrance Erlbaum Associates Publishers, New Jersey, pp. 109-110.
- Li, Q., Wang, Y., Liu, H., He, X., Xu, D., Wang, J. & Guo, F. (2014). Leukocyte cells identification and quantitative morphometry based on molecular hyperspectral imaging technology. Computerized Medical Imaging and Graphics, 38 (3): pp. 171-178.
- Maji, P., Mandal, A., Ganguly, M. & Saha, S. (2015). An Automated Method for Counting and Characterizing Red Blood Cells Using Mathematical Morphology. IEEE International Conference on Advances in Pattern Recognition, Kolkata, pp. 1-6.
- Orhan, U. & Adem, K. (2012). The Effects of Probability Factors in Naive Bayes Method. Elektrik-Elektronik ve Bilgisayar Mühendisliği Sempozyumu, Bursa, pp. 722-724.
- Osowski, S., Siroic, R., Markiewicz, T. & Siwek, K. (2009). Application of support vector machine and genetic algorithm for improved blood cell recognition. IEEE Transactions on Instrumentation and Measurement, 58(7): pp. 2159–2168.
- Osuna, E. E., Freund, R. & Girosi, F. (1997). Support Vector Machines: Training and Applications. Massachusetts Institute of Technology and Artificial Intelligence Laboratory Report, pp. 8-10.
- Pal, M. (2005). Random Forest Classifier for Remote Sensing Classification. Int. Journal of Remote Sensing, 26(1): pp. 217–222.
- Pandit, A., Kolhar, S. & Patil, P. (2015). Survey on Automatic RBC Detection and Counting. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4 (1): pp. 128-131.
- Ramesh, N., Dangott, B., Salama, M. E. & Tasdizen, T. (2012). Isolation and two-step classification of normal white blood cells in peripheral blood smears. Journal of Pathology Informatics, 3 (13): pp. 1-10.
- Ramoser, H., Laurain, V., Bischof, H. & Ecker, R. (2005). Leukocyte segmentation and classification in blood-smear images. IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, pp. 3371-3374.
- Rawat, J., Bhadauria, H. S., Singh, A. & Virmani, J. (2015). Review of leukocyte classification techniques for microscopic blood images. 2nd International Conference on Computing for Sustainable Global Development, New Delhi, pp. 1948-1954.
- Rodrigues, P., Ferreira, M. & Monteiro, J. (2008). Segmentation and Classification of Leukocytes Using Neural Networks: A Generalization Direction. Studies in Computational Intelligence, 83: pp. 373-396.
- Rosin, P. L. (2003). Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and App., 14(3): pp. 172-184.
- Sanei, S. & Lee, T. K. M. (2003). Cell Recognition Based on PCA and Bayesian Classification. 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, pp. 239-243.
- Saraswat, M. & Arya, K. V. (2014). Automated microscopic image analysis for leukocytes identification: A survey. Micron, 65 (2014): pp. 20-33.
- Saraswat, M. & Arya, K. V. (2014). Feature selection and classification of leukocytes using random forest. Medical & Biological Engineering & Computing, 52(12): pp. 1041-1052.
- Sarle, W. S. (1994). Neural Networks and Statistical Models. Proceedings of the Nineteenth Annual SAS Users Group International Conference, Texas, pp. 1-13.
- Sarrafzadeh, O., Rabbani, H., Talebi, A. & Yousefi-Banaem, H. (2014). Selection of the best features for leukocytes classification in blood smear microscopic images. Medical Imaging 2014: Digital Pathology, California, pp. 1-8.
- Soman, K. P., Loganathan, R. & Ajay, V. (2009). Machine learning with SVM and other kernel methods. PHI Learning Pvt. Ltd., Delhi/India, pp. 1-10.
- Sonar, S. C. & Bhagat, K. S. (2015). An Efficient Technique for White Blood Cells Nuclei Automatic Segmentation. International Journal of Scientific & Engineering Research, 6 (5): pp. 172-178.
- Su, M., Cheng, C. & Wang, P. (2014). A Neural-Network-Based Approach to White Blood Cell Classification. The Scientific World Journal, 2014: pp. 1-9.
- Tantikitti, S., Tumswadi, S. & Premchaiswadi, W. (2015). Image processing for detection of dengue virus based on WBC classification and decision tree. 13th International Conference on ICT and Knowledge Engineering, Bangkok, pp. 84-89.
- Theera-Umpon, N. & Dhompongsa, S. (2007). Morphological Granulometric Features of Nucleus in Automatic Bone Marrow White Blood Cell Classification. IEEE Transactions on Information Technology in Biomedicine, 11(3): pp. 353-359.
- Tomari, R., Wan Zakaria, Jamil, M.M.A., Nor, F.M., Fahran, N. & Fuad, N. (2014). Computer Aided System for Red Blood Cell Classification in Blood Smear Image. Procedia Computer Science, 42: pp. 206-213.
- Tuceryan, M. & Jain, A. K. (1998). In the Handbook of Pattern Recognition and Computer Vision 2nd Ed. Chen, C. H., Pau, L. F. and Wang, P. S. P., World Scientific Publishing Co., pp. 207-248.
- Venkatalakshmi, B. & Thilagavathi, K. (2013). Automatic Red Blood Cell Counting Using Hough Transform. IEEE Conference on Information & Communication Technologies (ICT), Thuckalay, pp. 267-271.
- Washington, S. P., Karlaftis, M. G. & Mannering, F. (2003). Statistical and Econometric Methods for Transportation Data Analysis 2nd Ed. Chapman and Hall/CRC, Boca Raton/FL, pp. 263-265.
- Xiong, W., Ong, S., Lim, J., Foong, K. W., Liu, J., Racoceanu, D., Chong, A. G. & Tan, K. S. (2010). Automatic Area Classification in Peripheral Blood Smears. IEEE Transactions on Biomedical Engineering, 57 (8): pp. 1982-1990.