Araştırma Makalesi
BibTex RIS Kaynak Göster

Polyester Bağlayıcılı Kompozitlerin Mekanik Özellikleri

Yıl 2019, Cilt: 11 Sayı: 2, 507 - 514, 30.06.2019
https://doi.org/10.29137/umagd.495051

Öz

Bu çalışmada bağlayıcı olarak polyester, agrega olarak ponza ve katkı malzemesi olarak uçucu kül kullanılarak polyester bağlayıcılı polimer kompozitler üretilmiştir. Bağlayıcı malzeme olarak çimento yerine polyester kullanılması ile polyester esaslı çimentosuz kompozitler üretilmiştir. 40×40×160 mm ebatlarında prizmatik numuneler üretilerek kompozitlerin basınç ve eğilme dayanımları test edilmiştir. EN 196-1'e göre maksimum basınç ve eğilme dayanımları sırasıyla 45,69 MPa ve 8,49 MPa elde edilmiştir. Kontrol numuneye göre basınç ve eğilme dayanımları sırasıyla %32,2 ve %27,9 oranında artmıştır.

Kaynakça

  • Xu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. doi:10.1016/j.conbuildmat.2014.04.054
  • Şimşek, B., & Uygunoğlu, T. (2018). Thermal, electrical, mechanical and fluidity properties of polyester-reinforced concrete composites. Sādhanā, 43(4), 57. doi:10.1007/s12046-018-0847-5
  • Heidari-Rarani, M., Aliha, M.R.M., Shokrieh, M.M., & Ayatollahi, M.R. (2014). Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—An experimental study. Construction and Building Materials, 64, 308–315. doi:10.1016/j.conbuildmat.2014.04.031
  • Zhao, L., Guo, X., Ge, C., Li, Q., Guo, L., Shu, X. & Liu, J. (2016). Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Construction and Building Materials, 113, 470–478. doi:10.1016/j.conbuildmat.2016.03.090
  • Seleem, H.E.H. (2006). The effect of inorganic fillers on the mechanical and thermal properties of polyester, Polymer- Plastics Technology and Engineering, 45(5), 585–590. doi:10.1080/03602550600553754
  • Uysal, H., Demirboğa, R., Şahin, R., & Gül, R. (2004). The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and concrete research, 34(5), 845-848. doi:10.1016/j.cemconres.2003.09.018
  • Yasar, E., Atis, C. D., Kilic, A., & Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash. Materials Letters, 57(15), 2267-2270. doi:10.1016/S0167-577X(03)00146-0
  • Hossain, K.M.A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601-1605. doi:10.1016/S0008-8846(03)00127-3
  • Hossain, K.M.A. (2004). Properties of volcanic pumice-based cement and lightweight concrete. Cement and concrete research, 34(2), 283-291. doi:10.1016/j.cemconres.2003.08.004
  • Hossain, K.M.A., Ahmed, S., & Lachemi, M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25(3), 1186-1195. doi:10.1016/j.conbuildmat.2010.09.036
  • Crangle, R.D. (2011). Pumice and pumicite. US geological survey minerals year book – mineral commodity summaries, 124–25.
  • Grasser, K., & Minke, G. (1990). Building with pumice. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH. Germany: Eschburn.
  • Yeginobali, A., Sobolev., K.G., Soboleva, S.V., & Tokyay, M. (1998). High strength natural lightweight aggregate concrete with silica fume. ACI SP-178-38, 178, 739–758.
  • Litvan, G.G. (1985). Further study of particulate admixtures for enhanced freeze–thaw resistance of concrete. ACI J 82 (5):724–730.
  • Hossain, K.M.A., & Lachemi, M. (2006). Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cement and Concrete Research, 36(6), 1123-1133. doi:10.1016/j.cemconres.2006.03.010
  • Khandaker, M., & Hossain, K.M.A. (2005). Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cement and Concrete Research, 35(6), 1141-1144. doi.org/10.1016/j.cemconres.2004.09.025
  • Khandaker, M., & Hossain, K.M.A. (2005). Chloride induced corrosion of reinforcement in volcanic ash and pumice based blended concrete. Cement and Concrete Composites, 27(3), 381-390. doi:10.1016/j.cemconcomp.2004.02.047
  • Neville, A.M. (1981). Properties of Concrete. Longman Scientific and Technical, New York.
  • Aruntaş, H.Y. (2006). Uçucu Küllerin İnşaat Sektöründe Kullanım Potansiyeli. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 21(1), 2006.
  • Sevim, Ö., & Demir, İ. (2019). Physical and permeability properties of cementitious mortars having fly ash with optimized particle size distribution. Cement and Concrete Composites, 2019, doi:10.1016/j.cemconcomp.2018.11.017. (in Press).
  • Sevim, Ö., & Demir, İ. (2019). Optimization of fly ash particle size distribution for cementitious systems with high compactness. Construction and Building Materials, 195, 104-114. doi:10.1016/j.conbuildmat.2018.11.080
  • Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal, 21(3), 275-283. doi:10.1016/j.jestch.2018.04.009
  • Zhao, J., Wang, D., Wang, X., Liao, S., & Lin, H. (2015). Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash. Construction and Building Materials, 78, 250-259. doi:10.1016/j.conbuildmat.2015.01.025
  • Bagheri, A., Zanganeh, H., Alizadeh, H., Shakerinia, M., & Marian, M.A.S. (2013). Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash. Construction and building materials, 47, 1402-1408. doi:10.1016/j.conbuildmat.2013.06.037
  • Shaikh, F.U., & Supit, S.W. (2015). Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and building materials, 82, 192-205. doi:10.1016/j.conbuildmat.2015.02.068
  • Haddad, M.U., Fowler, D.W., & Paul, D.R. (1983). Factors affecting the curing and strength of polymer concrete, ACI Journal September-October, 396–402. Wang, B., Qian, T., Zhang, Q., Zhan, X., & Chen, F. (2016). Heat resistance and surface properties of polyester resin modified with fluorosilicone. Surface and Coating Technology, 304, 31–39. doi:10.1016/j.surfcoat.2016.06.075
  • Lin, J.H., Hsieh, J.C., Lin, J.Y., Lin, M.C., & Lou, C.W. (2014). Polyester/low melting point polyester nonwoven fabrics used as soilless culture mediums: effects of the content of low melting point polyester fibers. Applied Mechanics and Materials, 457, 49–52. doi:10.4028/www.scientific.net/AMM.457-458.49
  • Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J. & Malucelli, G. (2014). Flame retardancy of polyester and polyester–cotton blends treated with caseins. Industrial & Engineering Chemistry Research, 53(10): 3917–3923. doi:10.1021/ie404089t
  • Zhao, M.L., Li, F.X., Yu, J.Y., & Wang, X.L. (2014). Preparation and characterization of poly (ethylene terephthalate) copolyesters modified with sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate and poly (ethylene glycol). Journal of Applied Polymer Science, 131(3). doi:10.1002/app.39823
  • TS 802, (2016). Design of Concrete Mixes. Turkish Standard Institution, Ankara.
  • TS EN 12390-3, (2003). Beton-Sertleşmiş Beton Deneyleri-Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini. Turkish Standard Institution, Ankara.

Mechanical Properties of Polyester Based Composites

Yıl 2019, Cilt: 11 Sayı: 2, 507 - 514, 30.06.2019
https://doi.org/10.29137/umagd.495051

Öz

In this study, polyester-based polymer composites were produced by using polyester as binder, pumice as aggregate and fly ash as additive material. Polyester-based composites were produced by using polyester instead of cement as binder material. The compressive and flexural strengths of the composites were tested by using prismatic samples of 40×40×160 mm. The maximum compressive and flexural strengths for EN 196-1 were 45.69 MPa and 8.49 MPa, respectively. Compressive and flexural strengths increased by 32.2% and 27.9%, respectively, compared to the control sample.

Kaynakça

  • Xu, F., Zhou, M., Chen, J., & Ruan, S. (2014). Mechanical performance evaluation of polyester fiber and SBR latex compound-modified cement concrete road overlay material. Construction and Building Materials, 63, 142–149. doi:10.1016/j.conbuildmat.2014.04.054
  • Şimşek, B., & Uygunoğlu, T. (2018). Thermal, electrical, mechanical and fluidity properties of polyester-reinforced concrete composites. Sādhanā, 43(4), 57. doi:10.1007/s12046-018-0847-5
  • Heidari-Rarani, M., Aliha, M.R.M., Shokrieh, M.M., & Ayatollahi, M.R. (2014). Mechanical durability of an optimized polymer concrete under various thermal cyclic loadings—An experimental study. Construction and Building Materials, 64, 308–315. doi:10.1016/j.conbuildmat.2014.04.031
  • Zhao, L., Guo, X., Ge, C., Li, Q., Guo, L., Shu, X. & Liu, J. (2016). Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Construction and Building Materials, 113, 470–478. doi:10.1016/j.conbuildmat.2016.03.090
  • Seleem, H.E.H. (2006). The effect of inorganic fillers on the mechanical and thermal properties of polyester, Polymer- Plastics Technology and Engineering, 45(5), 585–590. doi:10.1080/03602550600553754
  • Uysal, H., Demirboğa, R., Şahin, R., & Gül, R. (2004). The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete. Cement and concrete research, 34(5), 845-848. doi:10.1016/j.cemconres.2003.09.018
  • Yasar, E., Atis, C. D., Kilic, A., & Gulsen, H. (2003). Strength properties of lightweight concrete made with basaltic pumice and fly ash. Materials Letters, 57(15), 2267-2270. doi:10.1016/S0167-577X(03)00146-0
  • Hossain, K.M.A. (2003). Blended cement using volcanic ash and pumice. Cement and Concrete Research, 33(10), 1601-1605. doi:10.1016/S0008-8846(03)00127-3
  • Hossain, K.M.A. (2004). Properties of volcanic pumice-based cement and lightweight concrete. Cement and concrete research, 34(2), 283-291. doi:10.1016/j.cemconres.2003.08.004
  • Hossain, K.M.A., Ahmed, S., & Lachemi, M. (2011). Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials, 25(3), 1186-1195. doi:10.1016/j.conbuildmat.2010.09.036
  • Crangle, R.D. (2011). Pumice and pumicite. US geological survey minerals year book – mineral commodity summaries, 124–25.
  • Grasser, K., & Minke, G. (1990). Building with pumice. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH. Germany: Eschburn.
  • Yeginobali, A., Sobolev., K.G., Soboleva, S.V., & Tokyay, M. (1998). High strength natural lightweight aggregate concrete with silica fume. ACI SP-178-38, 178, 739–758.
  • Litvan, G.G. (1985). Further study of particulate admixtures for enhanced freeze–thaw resistance of concrete. ACI J 82 (5):724–730.
  • Hossain, K.M.A., & Lachemi, M. (2006). Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment. Cement and Concrete Research, 36(6), 1123-1133. doi:10.1016/j.cemconres.2006.03.010
  • Khandaker, M., & Hossain, K.M.A. (2005). Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cement and Concrete Research, 35(6), 1141-1144. doi.org/10.1016/j.cemconres.2004.09.025
  • Khandaker, M., & Hossain, K.M.A. (2005). Chloride induced corrosion of reinforcement in volcanic ash and pumice based blended concrete. Cement and Concrete Composites, 27(3), 381-390. doi:10.1016/j.cemconcomp.2004.02.047
  • Neville, A.M. (1981). Properties of Concrete. Longman Scientific and Technical, New York.
  • Aruntaş, H.Y. (2006). Uçucu Küllerin İnşaat Sektöründe Kullanım Potansiyeli. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 21(1), 2006.
  • Sevim, Ö., & Demir, İ. (2019). Physical and permeability properties of cementitious mortars having fly ash with optimized particle size distribution. Cement and Concrete Composites, 2019, doi:10.1016/j.cemconcomp.2018.11.017. (in Press).
  • Sevim, Ö., & Demir, İ. (2019). Optimization of fly ash particle size distribution for cementitious systems with high compactness. Construction and Building Materials, 195, 104-114. doi:10.1016/j.conbuildmat.2018.11.080
  • Demir, İ., Güzelkücük, S., & Sevim, Ö. (2018). Effects of sulfate on cement mortar with hybrid pozzolan substitution. Engineering Science and Technology, an International Journal, 21(3), 275-283. doi:10.1016/j.jestch.2018.04.009
  • Zhao, J., Wang, D., Wang, X., Liao, S., & Lin, H. (2015). Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash. Construction and Building Materials, 78, 250-259. doi:10.1016/j.conbuildmat.2015.01.025
  • Bagheri, A., Zanganeh, H., Alizadeh, H., Shakerinia, M., & Marian, M.A.S. (2013). Comparing the performance of fine fly ash and silica fume in enhancing the properties of concretes containing fly ash. Construction and building materials, 47, 1402-1408. doi:10.1016/j.conbuildmat.2013.06.037
  • Shaikh, F.U., & Supit, S.W. (2015). Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and building materials, 82, 192-205. doi:10.1016/j.conbuildmat.2015.02.068
  • Haddad, M.U., Fowler, D.W., & Paul, D.R. (1983). Factors affecting the curing and strength of polymer concrete, ACI Journal September-October, 396–402. Wang, B., Qian, T., Zhang, Q., Zhan, X., & Chen, F. (2016). Heat resistance and surface properties of polyester resin modified with fluorosilicone. Surface and Coating Technology, 304, 31–39. doi:10.1016/j.surfcoat.2016.06.075
  • Lin, J.H., Hsieh, J.C., Lin, J.Y., Lin, M.C., & Lou, C.W. (2014). Polyester/low melting point polyester nonwoven fabrics used as soilless culture mediums: effects of the content of low melting point polyester fibers. Applied Mechanics and Materials, 457, 49–52. doi:10.4028/www.scientific.net/AMM.457-458.49
  • Carosio, F., Di Blasio, A., Cuttica, F., Alongi, J. & Malucelli, G. (2014). Flame retardancy of polyester and polyester–cotton blends treated with caseins. Industrial & Engineering Chemistry Research, 53(10): 3917–3923. doi:10.1021/ie404089t
  • Zhao, M.L., Li, F.X., Yu, J.Y., & Wang, X.L. (2014). Preparation and characterization of poly (ethylene terephthalate) copolyesters modified with sodium-5-sulfo-bis-(hydroxyethyl)-isophthalate and poly (ethylene glycol). Journal of Applied Polymer Science, 131(3). doi:10.1002/app.39823
  • TS 802, (2016). Design of Concrete Mixes. Turkish Standard Institution, Ankara.
  • TS EN 12390-3, (2003). Beton-Sertleşmiş Beton Deneyleri-Bölüm 3: Deney Numunelerinde Basınç Dayanımının Tayini. Turkish Standard Institution, Ankara.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Özer Sevim 0000-0001-8535-2344

Yayımlanma Tarihi 30 Haziran 2019
Gönderilme Tarihi 11 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 11 Sayı: 2

Kaynak Göster

APA Sevim, Ö. (2019). Polyester Bağlayıcılı Kompozitlerin Mekanik Özellikleri. International Journal of Engineering Research and Development, 11(2), 507-514. https://doi.org/10.29137/umagd.495051
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.