Araştırma Makalesi
BibTex RIS Kaynak Göster

Döner Kanatlı Hava Araçları İçin Uçuş Verileri Kayıt Cihazı Tasarımının Sonlu Elaman Analizleri ve Deneysel Olarak Doğrulanması

Yıl 2019, Cilt: 11 Sayı: 2, 560 - 575, 30.06.2019
https://doi.org/10.29137/umagd.497996

Öz



Bu çalışmada, helikopterlerde
kullanılmak üzere Uçuş Verileri Kayıt Cihazının hafıza modülünün tasarımı ve
üretimi gerçekleştirilmiş, uluslararası havacılık standartlarına uyum
göstermesi için gerekli testlere tabi tutulmuştur. Tasarım çalışmalarında ANSYS
R.16.2 Sonlu Eleman Programı yardımıyla
hafıza modülünün dinamik serbest düşme, statik basma ve ısıl geçirgenlik
analizleri sayısal olarak yapılmıştır. Deneysel çalışmalarda ise sayısal
olarak bilgisayar ortamında yapılan analizlerin laboratuvar koşullarında
testleri gerçekleştirilmiştir. Dinamik serbest düşme testinde alt kısmında
çelik bir pim bulunan, 227 kg ağırlığındaki bir aparat 3 m yükseklikten
hafıza modülünün üzerine serbest düşürülmüştür. Parça üzerindeki kalıcı şekil
değişimi deneysel çalışmada 2.12 mm ölçülmüş, aynı değer sayısal analizde
1.99 mm olarak hesaplanmıştır. Statik basma testinde hafıza modülü hidrolik
bir pres yardımıyla 4500 kg lık bir basma kuvvetine maruz bırakılarak
sıkıştırılmaya çalışılmıştır. Basma testi için yapılan hem sayısal analiz hem
de deneysel çalışmalar sonucunda hafıza modülünde belirgin bir deformasyonun
olmadığı, şekil değişiminin elastik bölgede kaldığı görülmüştür. Isıl
geçirgenlik testinde, hafıza modülünün üst cidarına 11000C
sıcaklık 1800 s süresince uygulanmış ve model içerisindeki sıcaklık dağılımı
incelenmiştir. Sayısal çözüm ve deneysel çalışmalar sonucu; hafıza modülü
içerisindeki 150
0C
dereceye dayanıklı kartın 900C sıcaklığa maruz kaldığı
görülmüştür. Yapılan
çalışmalar sonucunda, tasarımı ve üretimi gerçekleştirilen Uçuş Verileri
Kayıt Cihazına ait hafıza modülünün mekanik ve ısıl analiz sonuçlarının
uluslararası havacılık standartları ile uyumlu olduğu sonucuna varılmıştır.


Kaynakça

  • [1] https://global.britannica.com/technology/flight-recorder (ErişimTarihi: 10.12.2016)
  • [2] Minimum Operational Performance specification For Crash Protected Airborne Recorder Systems (ED-112), EUROCAE, March 2003.
  • [3] R. D. Grossi, “National Transportation Safety Board”, Journal of Accident Investigation, 2(1), 31-43, 2006.
  • [4] G. Marlon, L. Tsuruta, “The Analysis of Flight Operational Quality Assurance (Foqa) Data: Exploration of a Proposed List of Improved Safety Parameters”, Embry-Riddle Aeronautical University Daytona Beach, Florida, July 2008.
  • [5] K. Navuria, D. Prakasha, P. Beulah Mania, A. E. Kumar, "Shock Response Analysis of Mechanical Hardware of Flight Data Recorder", Proceedings, 4(8), 8000-8009, 2017.
  • [6] Joseph W. Hill-Lindsay and John T. Yuen, “Ultra-High Impact Resistant Digital Data Recorder for Missile Flight Testing”, IEEE Transactıons On Components, Packagıng and Manufacturıng Technology-Part A, Vol. 17, No. 3, 1994.
  • [7] R. A. Rana, Ri Li, "Thermal protection from a finite period of heat exposure – Heat survival of flight data recorders", Applied Thermal Engineering, 75(22), 748-755, 2015.
  • [8] L.T. Kisielewiz, K. Ando, M. Endo, “Numerical simulation of laptop computer drop tests”, Eng. Systems Int. Asia (1993) 111–119, 1993.[9] B. Nagaraj, “Drop impact simulation of a custom pager product”, Adv. Electron. Packag. 1 (1997) 539–547, 1997.
  • [10] Y.Y. Wang, G.R. Liu, K.Y. Lam, Li Hua, “Numerical simulation of consumer products drop”, Proceedings of the High Performance Computing Conference (HPC’ASIA), vol. 1, Singapore, September 1998, 181–185.
  • [11] Y.Y. Wang, T.Y. Lin, L. Hua, “Drop-impact simulation and experimental verification for spindle fixation of video and audio module (VAM)”, Mechatronics 13 (5), 427–440, 2003.
  • [12] Low K.H., Yang A., Hoon K.H., Zhang X., Lim J.K.T., Lim K.L., “Initial study on the drop-impact behavior of mini Hi-Fi audio products”, Advances in Engineering Software 32, 683-693, 2001.
  • [13] C. R. Niemer, ANSYS Kullanıcılar Toplantısı, Whirlpool Corp., Evansville In, FİGES, 2000.
  • [14] H. Kim, J. Lee, S. Park, “Application of drop-impact simulation for package cushioning material reduction”, PUCA’97, 1997, 299–303.
  • [15] S. Kim, W. Cho, “Simulation of the drop test of a packaged refrigerator”, Reliability Stress Analysis, and Failure Prevention, 87, 109–116, 1995.
  • [16] C. Lu, J. Li,, Y.C. Tse, Y.Y. Wang, “Drop-test simulations for electronic devices with packaging materials”, Joint NCHC-IHPC Seminar, Taiwan, 9 March 2001.
  • [17] Wang, Y.Y., Lu, C., Li, J., Tan, X.M., Tse, Y.C., “Simulation of Drop Impact Reliability for Electronic Devices”, Finite Elements in Analysis and Design, 41, 667-680, 2005.
  • [18] Hsu, H., Hsian, B., “Applications of LS-DYNA in Electronic Products”, 7th International LS-DYNA Users Conference, South Michigan, 2004.
  • [19] Y.Y. Wang, C. Lu, J. Li, X.M. Tan, Y.C. Tse, “Simulation of drop/impact reliability for electronic devices”, Finite Elements in Analysis and Design 41(2005) 667–680, 2005.
  • [20] Schwer, L.E., Kennedy, J.M., “A Validation Case Study: Steel Billet Drop Tests and Simulations as Reported in NUREG/CR-6608”, 6th International LS-DYNA Conference, Dearborn, Michigan, April 9-11, 2000.
  • [21] Jackson, K.E., Fasanella, E.L., “Development of an LS-DYNA Model of an ATR42-300 Aircraft for Crash Simulation”, 8th International LS-DYNA Users’ Conference, Dearborn, Michigan, May 2-4, 2004.
  • [22] Fasanella, E.L., Jackson, K.E., “Best Practices for Crash Modeling and Simulation”, Technical Report NASA/TM-2002-211944, Langley Research Center, Hampton, VA 2002.
  • [23] J. Leijten, E. Harald, N. Bersee, K.O. Bergsma, A. Beukers, “Experimental Study of the Low-Velocity Impact Behaviour of Primary Sandwich Structures in Aircraft”, Composites, Part A, (40), 164-175. 2009.
  • [24] T. Anderson, E. Madenci, “Experimental İnvestigation of Low-Velocity İmpact Characteristics of Sandwich Composites”, Composites Structure, 50 (3), 239–247, 2000.
  • [25] M. K. Yeh, T. H. Huang, “Drop Test and Finite Element Analysis of Test Board”, Procedia Engineering 79 (2014), 238–243, 2014.
  • [26] Z. EREN, “Eksenel Darbe Yükü Uygulanan İç İçe Tüplerin Çarpışma ve Ezilme Davranışının Sayısal ve Deneysel Olarak İncelenmesi”, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, 2015.
  • [27] A. Ayyıldız, “Buzdolabı Düşürme Testinin Sonlu Elemanlar Metodu Yardımıyla Nonlinear Analizi ve Deney Sonuçlarıyla Karşılaştırılması”, Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 2006.
  • [28] O. YILDIRIM, “İnsansız Model Helikopterlerin İniş Takımlarının Düşme Testlerinin Deneysel ve Sayısal Analizleri”, Yüksek Lisans Tezi, Makine Mühendisliği Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2014.

Finite Element Analysis and Experimental Verification of Flight Data Recorder Design for Rotary Wing Aircraft

Yıl 2019, Cilt: 11 Sayı: 2, 560 - 575, 30.06.2019
https://doi.org/10.29137/umagd.497996

Öz

In this study, a flight data recorder to be used on
helicopters was designed, produced and tested to show compliance to
international aviation standards. In design studies, dynamic, static and
thermal analyses of flight data recorder were did in the Ansys Finite Element
Program numerically.  In the experimental
study, the tests of performed analyses in computers were carried out in
laboratory. In the dynamic test, an apparatus weighing 227 kg, with a steel pin
on the lower surface, was dropped onto the memory module from a height of 3 m. Permanent
deformation of the part surface was measured as 2.12mm in laboratory, similarly
the same deformation was calculated as 1.99mm in computer analysis. In the
compression test, the flight data recorder was compressed with a load that is
4500 kg by a hydrostatic press. In both numerical and experimental studies of
compression test, the deformation of the flight data recorder is in elastic
range of the material since there is no significant deformation in the flight
data recorder. In the thermal conductivity test, 1100
°C
temperature applied to the upper wall of the flight data recorder for 1800sec.
and thermal distribution of interior of the model was investigated. As a result
of the numerically analysis and experimental study, it was observed that the
card resist until 150
°C
temperature in the memory module was exposed to 90०C temperature. It was seen
that, the results of mechanical and thermal tests which have been performed on
designed Flight Data Recorder are compliant with international aviation
standards.

Kaynakça

  • [1] https://global.britannica.com/technology/flight-recorder (ErişimTarihi: 10.12.2016)
  • [2] Minimum Operational Performance specification For Crash Protected Airborne Recorder Systems (ED-112), EUROCAE, March 2003.
  • [3] R. D. Grossi, “National Transportation Safety Board”, Journal of Accident Investigation, 2(1), 31-43, 2006.
  • [4] G. Marlon, L. Tsuruta, “The Analysis of Flight Operational Quality Assurance (Foqa) Data: Exploration of a Proposed List of Improved Safety Parameters”, Embry-Riddle Aeronautical University Daytona Beach, Florida, July 2008.
  • [5] K. Navuria, D. Prakasha, P. Beulah Mania, A. E. Kumar, "Shock Response Analysis of Mechanical Hardware of Flight Data Recorder", Proceedings, 4(8), 8000-8009, 2017.
  • [6] Joseph W. Hill-Lindsay and John T. Yuen, “Ultra-High Impact Resistant Digital Data Recorder for Missile Flight Testing”, IEEE Transactıons On Components, Packagıng and Manufacturıng Technology-Part A, Vol. 17, No. 3, 1994.
  • [7] R. A. Rana, Ri Li, "Thermal protection from a finite period of heat exposure – Heat survival of flight data recorders", Applied Thermal Engineering, 75(22), 748-755, 2015.
  • [8] L.T. Kisielewiz, K. Ando, M. Endo, “Numerical simulation of laptop computer drop tests”, Eng. Systems Int. Asia (1993) 111–119, 1993.[9] B. Nagaraj, “Drop impact simulation of a custom pager product”, Adv. Electron. Packag. 1 (1997) 539–547, 1997.
  • [10] Y.Y. Wang, G.R. Liu, K.Y. Lam, Li Hua, “Numerical simulation of consumer products drop”, Proceedings of the High Performance Computing Conference (HPC’ASIA), vol. 1, Singapore, September 1998, 181–185.
  • [11] Y.Y. Wang, T.Y. Lin, L. Hua, “Drop-impact simulation and experimental verification for spindle fixation of video and audio module (VAM)”, Mechatronics 13 (5), 427–440, 2003.
  • [12] Low K.H., Yang A., Hoon K.H., Zhang X., Lim J.K.T., Lim K.L., “Initial study on the drop-impact behavior of mini Hi-Fi audio products”, Advances in Engineering Software 32, 683-693, 2001.
  • [13] C. R. Niemer, ANSYS Kullanıcılar Toplantısı, Whirlpool Corp., Evansville In, FİGES, 2000.
  • [14] H. Kim, J. Lee, S. Park, “Application of drop-impact simulation for package cushioning material reduction”, PUCA’97, 1997, 299–303.
  • [15] S. Kim, W. Cho, “Simulation of the drop test of a packaged refrigerator”, Reliability Stress Analysis, and Failure Prevention, 87, 109–116, 1995.
  • [16] C. Lu, J. Li,, Y.C. Tse, Y.Y. Wang, “Drop-test simulations for electronic devices with packaging materials”, Joint NCHC-IHPC Seminar, Taiwan, 9 March 2001.
  • [17] Wang, Y.Y., Lu, C., Li, J., Tan, X.M., Tse, Y.C., “Simulation of Drop Impact Reliability for Electronic Devices”, Finite Elements in Analysis and Design, 41, 667-680, 2005.
  • [18] Hsu, H., Hsian, B., “Applications of LS-DYNA in Electronic Products”, 7th International LS-DYNA Users Conference, South Michigan, 2004.
  • [19] Y.Y. Wang, C. Lu, J. Li, X.M. Tan, Y.C. Tse, “Simulation of drop/impact reliability for electronic devices”, Finite Elements in Analysis and Design 41(2005) 667–680, 2005.
  • [20] Schwer, L.E., Kennedy, J.M., “A Validation Case Study: Steel Billet Drop Tests and Simulations as Reported in NUREG/CR-6608”, 6th International LS-DYNA Conference, Dearborn, Michigan, April 9-11, 2000.
  • [21] Jackson, K.E., Fasanella, E.L., “Development of an LS-DYNA Model of an ATR42-300 Aircraft for Crash Simulation”, 8th International LS-DYNA Users’ Conference, Dearborn, Michigan, May 2-4, 2004.
  • [22] Fasanella, E.L., Jackson, K.E., “Best Practices for Crash Modeling and Simulation”, Technical Report NASA/TM-2002-211944, Langley Research Center, Hampton, VA 2002.
  • [23] J. Leijten, E. Harald, N. Bersee, K.O. Bergsma, A. Beukers, “Experimental Study of the Low-Velocity Impact Behaviour of Primary Sandwich Structures in Aircraft”, Composites, Part A, (40), 164-175. 2009.
  • [24] T. Anderson, E. Madenci, “Experimental İnvestigation of Low-Velocity İmpact Characteristics of Sandwich Composites”, Composites Structure, 50 (3), 239–247, 2000.
  • [25] M. K. Yeh, T. H. Huang, “Drop Test and Finite Element Analysis of Test Board”, Procedia Engineering 79 (2014), 238–243, 2014.
  • [26] Z. EREN, “Eksenel Darbe Yükü Uygulanan İç İçe Tüplerin Çarpışma ve Ezilme Davranışının Sayısal ve Deneysel Olarak İncelenmesi”, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, 2015.
  • [27] A. Ayyıldız, “Buzdolabı Düşürme Testinin Sonlu Elemanlar Metodu Yardımıyla Nonlinear Analizi ve Deney Sonuçlarıyla Karşılaştırılması”, Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 2006.
  • [28] O. YILDIRIM, “İnsansız Model Helikopterlerin İniş Takımlarının Düşme Testlerinin Deneysel ve Sayısal Analizleri”, Yüksek Lisans Tezi, Makine Mühendisliği Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2014.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Barış Kalaycıoğlu

Hakan Arslan Bu kişi benim

İlhan Yapar Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2019
Gönderilme Tarihi 16 Kasım 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 11 Sayı: 2

Kaynak Göster

APA Kalaycıoğlu, B., Arslan, H., & Yapar, İ. (2019). Döner Kanatlı Hava Araçları İçin Uçuş Verileri Kayıt Cihazı Tasarımının Sonlu Elaman Analizleri ve Deneysel Olarak Doğrulanması. International Journal of Engineering Research and Development, 11(2), 560-575. https://doi.org/10.29137/umagd.497996
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.