Yıl 2019, Cilt 11 , Sayı 2, Sayfalar 464 - 473 2019-06-30

Autonomous Preprocessing for Image Set Based Face Recognition
İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme

Hasan Serhan Yavuz [1] , Meltem Seyirt [2]


Automatic face recognition process has become a popular topic in recent years. The facial recognition process, where previously single-image based methods were more common, has started to leave its place in video-based approaches by the development of camera and computing technologies. In video based recognition applications, it becomes more difficult to match the image sets of the same person whose frames captured under different illumination conditions or when the compared frames include different face poses such as frontal versus profile. In this study, we investigate how to improve the accuracies of set based face recognition methods in case of lighting and face pose variations. At the pre-processing stage, after the illumination differences are refined, the images are firstly classified according to face exposure. The faces that are separated according to the poses are aligned to the corresponding canonical pose patterns to reduce intra class variations. Experimental results demonstrate that set based recognition methods give higher correct recognition rates when the proposed methodology schemes have been applied as a preprocessing stage.

Otomatik yüz tanıma süreci son yıllarda popülerliğini arttırmış bir konudur. İmge tabanlı yaklaşımların hâkim olduğu yüz tanıma süreci, kamera ve hesaplama teknolojilerinin gelişimiyle yerini video tabanlı yaklaşımlara bırakmaktadır. Video tabanlı yüz tanıma uygulamalarında, özellikle kişilerin farklı aydınlatma veya cepheden, yandan görünüm vb. farklı pozlar içeren imge kümelerinin eşleştirilmesi zorluklar içermektedir. Bu çalışmada, özellikle aydınlatma ve poz çeşitliliklerinin var olduğu durumlarda, küme tabanlı yüz tanıma yöntemlerinin başarımlarının nasıl iyileştirilebileceği araştırılmıştır. Ön işleme basamağında, aydınlatma farklılıkları giderildikten sonra imgeler öncelikle yüz pozuna göre sınıflandırılmıştır. Pozlara göre ayrıştırılan yüzler, sınıf içi değişimlerinin azaltılması için ilgili pozun şablonuna hizalanmıştır. Yapılan deneyler sonucunda, önişleme basamağında önerilen otomatik poz hizalama yöntemi kullanıldığında, video tabanlı yüz tanıma deneylerinin başarım oranlarında gelişmeler sağlandığı tespit edilmiştir.

  • Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (12), 2037-2041. doi: 10.1109/tpami.2006.244
  • Cevikalp, H., & Triggs, B. (2010). Face recognition based on image sets. In 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE. doi: 10.1109/cvpr.2010.5539965
  • Chelali, F., Djeradi, A., & Djeradi, R. (2009). Linear discriminant analysis for face recognition. In 2009 international conference on multimedia computing and systems. IEEE. doi: 10.1109/mmcs.2009.5256630
  • Gross, R., & Shi, J. (2001). The cmu motion of body (mobo) database (Tech. Rep. No. CMU-RI-TR-01-18). Pittsburgh, PA: Carnegie Mellon University.
  • Harandi, M. T., Sanderson, C., Shirazi, S., & Lovell, B. C. (2013). Kernel analysis on Grassmann manifolds for action recognition. Pattern Recognition Letters, 34 (15), 1906-1915. doi: 10.1016/j.patrec.2013.01.008
  • Hassaballah, M., & Aly, S. (2015). Face recognition: challenges, achievements and future directions. IET Computer Vision, 9 (4), 614-626. doi: 10.1049/iet-cvi.2014.0084
  • Hu, Y., Mian, A. S., & Owens, R. (2012). Face recognition using sparse approximated nearest points between image sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (10), 1992-2004. doi: 10.1109/TPAMI.2011.283
  • Intraface. (2018, oct). Intraface software, the human sensing laboratory of carnegie mellon university. Retrieved from http://www.humansensing.cs.cmu.edu/software
  • Kim, M., Kumar, S., Pavlovic, V., & Rowley, H. (2008). Face tracking and recognition with visual constraints in real-world videos. In 2008 IEEE conference on computer vision and pattern recognition. IEEE. doi: 10.1109/cvpr.2008.4587572
  • Lee, K.-C., Ho, J., Yang, M.-H., & Kriegman, D. (2005). Visual tracking and recognition using probabilistic appearance manifolds. Computer Vision and Image Understanding, 99 (3), 303-331. doi: 10.1016/j.cviu.2005.02.002
  • Li, S. Z., & Jain, A. K. (Eds.). (2011). Handbook of face recognition. Springer London.
  • Li, Z., Lin, D., & Tang, X. (2009). Nonparametric discriminant analysis for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (4), 755-761. doi: 10.1109/tpami.2008.174
  • Lienhart, R., & Maydt, J. (2002). An extended set of haar-like features for rapid object detection. In proceedings of international conference on image processing. IEEE. doi: 10.1109/icip.2002.1038171
  • Liu, C. (2004). Gabor-based kernel pca with fractional power polynomial models for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 (5), 572-581. doi: 10.1109/tpami.2004.1273927
  • Lu, J., Plataniotis, K., & Venetsanopoulos, A. (2003). Face recognition using kernel direct discriminant analysis algorithms. IEEE Transactions on Neural Networks, 14 (1), 117-126. doi: 10.1109/tnn.2002.806629
  • Lu, J., Wang, G., & Zhou, J. (2017). Simultaneous feature and dictionary learning for image set based face recognition. IEEE Transactions on Image Processing, 26 (8), 4042-4054. doi: 10.1109/tip.2017.2713940
  • Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. (1999). Fisher discriminant analysis with kernels. In Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no.98th8468). IEEE. doi: 10.1109/nnsp.1999.788121
  • Nhat, V. D. M., & Lee, S. (2007). Kernel-based 2dpca for face recognition. In 2007 IEEE international symposium on signal processing and information technology. IEEE. doi: 10.1109/isspit.2007.4458104
  • OpenCV. (2018, dec). Open source computer vision (opencv) library. Retrieved from https://opencv.org/
  • Scholkopf, B., Smola, A., & Muller, K.-R. (1997). Kernel principal component analysis. In Lecture notes in computer science (pp. 583{588). Springer Berlin Heidelberg. doi: 10.1007/bfb0020217
  • Shi, B., Bai, X., Liu, W., & Wang, J. (2018). Face alignment with deep regression. IEEE Transactions on Neural Networks and Learning Systems, 29 (1), 183-194. doi: 10.1109/tnnls.2016.2618340
  • Tistarelli, M., & Champod, C. (Eds.). (2017). Handbook of biometrics for forensic science. Springer International Publishing. doi: 10.1007/978-3-319-50673-9
  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3 (1), 71-86. doi: 10.1162/jocn.1991.3.1.71
  • Vinay, A., Shekhar, V., Murthy, K. B., & Natarajan, S. (2015). Face recognition using gabor wavelet features with PCA and KPCA - a comparative study. Procedia Computer Science, 57 , 650-659. doi: 10.1016/j.procs.2015.07.434
  • Viola, P., & Jones, M. (2001). Robust real-time object detection. International Journal of Computer Vision, 57, 137-154. doi: 10.1023/B:VISI.0000013087.49260.fb
  • Wang, H., Wang, Y., & Cao, Y. (2009). Video-based face recognition: A survey. World Academy of Science, Engineering and Technology, 2 , 136-139. doi: 10.1007/978-1-84882-385-3_8
  • Wang, R., Shan, S., Chen, X., Dai, Q., & Gao, W. (2012). Manifold-manifold distance and its application to face recognition with image sets. IEEE Transactions on Image Processing, 21 (10), 4466-4479. doi: 10.1109/tip.2012.2206039
  • Wiskott, L., Fellous, J.-M., Kruger, N., & von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. In Computer analysis of images and patterns (pp. 456-463). Springer Berlin Heidelberg. doi: 10.1007/3-540-63460-6_150
  • Wu, Y., & Ji, Q. (2018). Facial landmark detection: A literature survey. International Journal of Computer Vision. doi: 10.1007/s11263-018-1097-z
  • Xiong, X., & De La Torre, F. (2013). Supervised descent method and its applications to face alignment. In Proceedings of the ieee computer society conference on computer vision and pattern recognition (pp. 532-539). doi: 10.1109/CVPR.2013.75
  • Yalcin, M., Cevikalp, H., & Yavuz, H. S. (2015). Towards large-scale face recognition based on videos. In 2015 IEEE international conference on computer vision workshop (ICCVW). IEEE. doi: 10.1109/iccvw.2015.141
  • Yamaguchi, O., Fukui, E., & Maeda, K. (1998). Face recognition using temporal image sequence. In proceedings third IEEE international conference on automatic face and gesture recognition. IEEE. doi: 10.1109/afgr.1998.670968
  • Yang, M., Wang, X., Liu, W., & Shen, L. (2017). Joint regularized nearest points for image set based face recognition. Image and Vision Computing, 58 , 47-60. doi: 10.1016/j.imavis.2016.07.008
  • Yang, M., Zhu, P., Gool, L. V., & Zhang, L. (2013). Face recognition based on regularized nearest points between image sets. In 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG). IEEE. doi: 10.1109/fg.2013.6553727
  • Yang, M. H., Kriegman, D. J., & Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (1), 34-58. doi: 10.1109/34.982883
  • Yavuz, H. S., Cevikalp, H., & Edizkan, R. (2013). Automatic face recognition from frontal images. In 2013 21st signal processing and communications applications conference (SIU). IEEE. doi: 10.1109/SIU.2013.6531215
  • Zhao, J., Han, J., & Shao, L. (2018). Unconstrained face recognition using a set-to-set distance measure on deep learned features. IEEE Transactions on Circuits and Systems for Video Technology, 28 (10), 2679-2689. doi: 10.1109/tcsvt.2017.2710120
  • Zhou, E., Fan, H., Cao, Z., Jiang, Y., & Yin, Q. (2013). Extensive facial landmark localization with coarse-to-fine convolutional network cascade. In Proceedings of the ieee international conference on computer vision (pp. 386-391). doi: 10.1109/ICCVW.2013.58
  • Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In Proceedings of the ieee computer society conference on computer vision and pattern recognition (pp. 2879-2886). doi: 10.1109/CVPR.2012.6248014
Birincil Dil tr
Konular Mühendislik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Yazar: Hasan Serhan Yavuz (Sorumlu Yazar)
Kurum: ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ
Ülke: Turkey


Yazar: Meltem Seyirt
Kurum: TÜBİTAK BİLGEM
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 30 Haziran 2019

Bibtex @araştırma makalesi { umagd510731, journal = {International Journal of Engineering Research and Development}, issn = {}, eissn = {1308-5514}, address = {Kırıkkale Üniversitesi Mühendislik Fakültesi Dekanlığı Kampüs 71450 Yahşihan/KIRIKKALE}, publisher = {Kırıkkale Üniversitesi}, year = {2019}, volume = {11}, pages = {464 - 473}, doi = {10.29137/umagd.510731}, title = {İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme}, key = {cite}, author = {Yavuz, Hasan Serhan and Seyirt, Meltem} }
APA Yavuz, H , Seyirt, M . (2019). İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme. International Journal of Engineering Research and Development , 11 (2) , 464-473 . DOI: 10.29137/umagd.510731
MLA Yavuz, H , Seyirt, M . "İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme". International Journal of Engineering Research and Development 11 (2019 ): 464-473 <https://dergipark.org.tr/tr/pub/umagd/issue/43865/510731>
Chicago Yavuz, H , Seyirt, M . "İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme". International Journal of Engineering Research and Development 11 (2019 ): 464-473
RIS TY - JOUR T1 - İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme AU - Hasan Serhan Yavuz , Meltem Seyirt Y1 - 2019 PY - 2019 N1 - doi: 10.29137/umagd.510731 DO - 10.29137/umagd.510731 T2 - International Journal of Engineering Research and Development JF - Journal JO - JOR SP - 464 EP - 473 VL - 11 IS - 2 SN - -1308-5514 M3 - doi: 10.29137/umagd.510731 UR - https://doi.org/10.29137/umagd.510731 Y2 - 2019 ER -
EndNote %0 Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme %A Hasan Serhan Yavuz , Meltem Seyirt %T İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme %D 2019 %J International Journal of Engineering Research and Development %P -1308-5514 %V 11 %N 2 %R doi: 10.29137/umagd.510731 %U 10.29137/umagd.510731
ISNAD Yavuz, Hasan Serhan , Seyirt, Meltem . "İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme". International Journal of Engineering Research and Development 11 / 2 (Haziran 2019): 464-473 . https://doi.org/10.29137/umagd.510731
AMA Yavuz H , Seyirt M . İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme. IJERAD. 2019; 11(2): 464-473.
Vancouver Yavuz H , Seyirt M . İmge Kümeleriyle Yüz Tanıma için Otomatik Önişleme. International Journal of Engineering Research and Development. 2019; 11(2): 473-464.