Yıl 2019, Cilt 11 , Sayı 2, Sayfalar 637 - 642 2019-06-30

Effect of Bath Composition on Structural Properties of Graphene Reinforcement Silver Matrix produced by Electroless Deposition
Akımsız Kaplama Yöntemi ile Üretilmiş Grafen Takviyeli Gümüş Matrisli Nanokompozitlerin Yapısal Özellikline Banyo Bileşiminin Etkisi

Ramazan KARSLIOĞLU [1]


In this study, Silver (Ag) and Graphene (Gr) reinforcement Ag matrix nanocomposite coated on copper substrate by electroless coating method. Different amount of Gr was added to Ag electroless coating electrolyte and effect of Gr amount on microstructure and mechanical properties were investigated. Ag and Ag-Gr nanocomposites structural properties characterized with Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDS), Raman and X-ray Diffractions (XRD). Mechanical properties were measured with microhardness method. Gr addition to electrolyte was strongly affected matris microstructure and increased hardness value. Highest hardness value was achieved with 0.5 g/l Gr addition to electrolyte.

Bu çalışmada akımsız kaplama yöntemi ile bakır altlıklar üzerine Gümüş (Ag) ve Grafen (Gr) takviyeli Ag matrisli nanokompozit kaplanmıştır. Ag kaplama banyoları içerisine farklı oranlarda Gr ilave edilerek Gr oranının mikro yapı ve mekanik özelliklere etkileri incelenmiştir. Ag ve Ag-Gr nanokompozit kapamaların yapısal özelikleri taramalı elektron mikroskobu (SEM), Elektron dağılımlı X-ışınları spektrometresi (EDS), Raman ve X ışınları dağılım spektrometresi (XRD) yardımı ile mekanik özellikleri ise mikrosertlik yöntemi kullanılarak incelenmiştir. Kaplama banyosuna Gr ilavesi belirgin bir şekilde matris mikroyapısını değiştirmiş ve yüzey sertliğini artırmıştır. En yüksek sertlik değeri banyo bileşimine 0.5 g/l Gr ilavesi ile elde edilmiştir. 

  • Yu,Y., Lee, K., Kim, J., Kwon, Y., Chang, M., Kwon, D., Sung C., . (2005). Mechanical properties of Cu-TiB/sub 2/ nanocomposite by MA/SPS. Proceedings. The 9th Russian-Korean International Symposium on Science and Technology, 2005. KORUS 2005. (ss. 568-570). https://doi.org/10.1109/KORUS.2005.1507784
  • Chen, D., Qiao, X., Qiu, X., Tan, F., Chen, J., & Jiang, R. (2010). Effect of silver nanostructures on the resistivity of electrically conductive adhesives composed of silver flakes. Journal of Materials Science: Materials in Electronics, 21(5), 486-490. https://doi.org/10.1007/s10854-009-9943-y
  • Daoush, W. M., Lim, B. K., Mo, C. B., Nam, D. H., & Hong, S. H. (2009). Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process. Materials Science and Engineering: A, 513-514, 247-253. https://doi.org/10.1016/j.msea.2009.01.073
  • He, P., Huang, S., Wang, H., Huang, Z., Hu, J., Cheng, X., & Pan, C. (2014). Electroless nickel–phosphorus plating on silicon carbide particles for metal matrix composites. Ceramics International, 40(10, Part B), 16653-16664. https://doi.org/10.1016/j.ceramint.2014.08.027
  • Hwang, H. J., Toriyama, M., Sekino, T., & Niihara, K. (1998). In-situ fabrication of ceramic/Metal nanocomposites by reduction reaction in barium titanate–Metal oxide systems. Journal of the European Ceramic Society, 18(14), 2193-2199. https://doi.org/10.1016/S0955-2219(98)00154-X
  • In Situ Thermal Reduction of Graphene Nanosheets Based Poly(methyl methacrylate) Nanocomposites with Effective Reinforcements - Industrial & Engineering Chemistry Research (ACS Publications). (t.y.). Geliş tarihi 11 Mart 2019, gönderen https://pubs.acs.org/doi/abs/10.1021/ie5035978
  • Karslioglu, R., & Akbulut, H. (2015). Comparison microstructure and sliding wear properties of nickel–cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition. Applied Surface Science, 353, 615-627. https://doi.org/10.1016/j.apsusc.2015.06.161
  • Krishnamoorthy, K., Kim, G.-S., & Kim, S. J. (2013). Graphene nanosheets: Ultrasound assisted synthesis and characterization. Ultrasonics Sonochemistry, 20(2), 644-649. https://doi.org/10.1016/j.ultsonch.2012.09.007
  • Mallory, G. O., & Hajdu, J. B. (1990). Electroless Plating: Fundamentals and Applications. William Andrew.
  • Manepalli, R., Stepniak, F., Bidstrup-Allen, S. A., & Kohl, P. A. (1999). Silver metallization for advanced interconnects. IEEE Transactions on Advanced Packaging, 22(1), 4-8. https://doi.org/10.1109/6040.746536
  • Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75-127. https://doi.org/10.1016/j.pmatsci.2017.07.004
  • Wang, R., Ye, W., Ma, C., & Wang, C. (2008). Preparation and characterization of nanodiamond cores coated with a thin Ni–Zn–P alloy film. Materials Characterization, 59(2), 108-111. https://doi.org/10.1016/j.matchar.2006.11.001
  • Whitby, R. L. D. (2014). Chemical Control of Graphene Architecture: Tailoring Shape and Properties. ACS Nano, 8(10), 9733-9754. https://doi.org/10.1021/nn504544h
Birincil Dil tr
Konular Mühendislik, Mühendislik, Ortak Disiplinler
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-5490-3449
Yazar: Ramazan KARSLIOĞLU (Sorumlu Yazar)
Kurum: ANKARA YILDIRIM BEYAZIT ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 30 Haziran 2019

APA Karslıoğlu, R . (2019). Akımsız Kaplama Yöntemi ile Üretilmiş Grafen Takviyeli Gümüş Matrisli Nanokompozitlerin Yapısal Özellikline Banyo Bileşiminin Etkisi . International Journal of Engineering Research and Development , 11 (2) , 637-642 . DOI: 10.29137/umagd.539224