Research Article
BibTex RIS Cite

Dizel Yakıtına Farklı Ağır Alkoller (1-Bütanol, 1-Pentanol ve 1-Hekzanol) İlave Edilmesinin Tek Silindirli Bir Dizel Motorunun Performans, Yanma ve Egzoz Emisyon Karakteristiklerine Etkileri

Year 2020, Volume: 12 Issue: 2, 397 - 426, 30.06.2020
https://doi.org/10.29137/umagd.704961

Abstract

Petrol tüketiminin artmasına bağlı olarak tüm dünyada rezervlerin gün geçtikçe azalması ve çevre kirliliğinin ciddi boyutlara ulaşması araştırmacıları içten yanmalı motorlar için alternatif ve temiz enerji kaynakları araştırmaya yönlendirmiştir. Kısa zincirli alkollerin (metanol ve etanol) düşük enerji içerikleri ve setan sayıları gibi olumsuz özelliklerinden dolayı kimyasal yapılarında dört ya da daha fazla karbon atomu içeren ağır alkoller, dizel motorlar için ön plana çıkmaktadır. Bu çalışmanın amacı, dizel yakıtına hacimsel olarak %15 oranlarında 1-bütanol, 1-pentanol ve 1-hekzanol alkolleri eklenerek hazırlanan alternatif yakıtları (Bt15: %15 1-bütanol + %85 dizel yakıtı, Pt15: %15 1-pentanol + %85 dizel yakıtı, Hk15: %15 1-hekzanol + %85 dizel yakıtı) tek silindirli, dört zamanlı, direkt enjeksiyonlu bir dizel motorda 1500 d/d sabit motor devri ve farklı yüklerde (%25, %50, %75 ve %100) test ederek performansı, emisyon ve yanma karakteristiklerini referans dizel yakıt (D100) ile karşılaştırmaktır. Sonuç olarak, alkollerin dizel yakıtına göre düşük kalori değerlerine sahip olmalarından dolayı, alkol karışımlı yakıtlar fren termal verimin azalmasına, fren özgül yakıt tüketiminin ise yükselmesine neden olmuştur. %100 motor yükünde; D100, Bt15, Pt15 ve Hk15 yakıtlarının maksimum net ısı salımı hızları sırasıyla 29,55 J/o, 31,14 J/o, 32,66 J/o ve 33,80 J/o olarak bulunurken, maksimum silindir basınçları ise sırasıyla 46,97 bar, 47,76 bar, 48,41 bar ve 48,91 bar olarak gözlemlenmiştir. Ayrıca alkol karışımlı yakıtların düşük setan sayılarından dolayı tutuşma gecikmesi süresini dizel yakıtına göre genel olarak artırdığı belirlenmiştir. Dizel yakıtına alkol ilavesi ile CO, HC ve NOX emisyonları ile egzoz gazı sıcaklıkları azalırken, CO2 ve O2 emisyonları ise artmıştır. Tüm deneysel sonuçlar değerlendirildiğinde, Hk15 karışımının performans, emisyon ve yanma özellikleri açısından en iyi sonuçları verdiği söylenebilir.

References

  • Acaroğlu, M., Aydoğan, H., Özçelik, A. E. (2018). Yakıtlar ve Yanma. Nobel Yayın Dağıtım Tic. Ltd. Şti., Yayın No: 2143, Teknik Bilimler: 177, Ostim, Ankara, 2. Basım. ISBN: 978-605-7928-52-8.
  • Ağbulut, Ü., Sarıdemir, S., Albayrak, S. (2019). Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9):389.
  • Aksoy, F., Bayrakçeken, H. (2010). Dizel Yakıtına% 5 ve % 10 İzopropil Alkol (IPA) İlavesinin Motor Performans ve Emisyonlarına Etkisi. Taşıt Teknolojileri Elektronik Dergisi, 2(3):37-43.
  • Alagumalai, A. (2015). Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine. Alexandria Engineering Journal, 54(3):405-413.
  • Aloko, D., Adebayo, G. A., Oke, O. E. (2007). Evaluation of diesel-hexanol blend as diesel fuel. Leonardo Electronic Journal of Practices and Technologies, 10(6):151-156.
  • Alptekin, E. (2017). Evaluation of ethanol and isopropanol as additives with diesel fuel in a CRDI diesel engine. Fuel, 205:161-172.
  • Alptekin, E., Canakci, M., Ozsezen, A. N., Turkcan, A., Sanli, H. (2015). Using waste animal fat based biodiesels–bioethanol–diesel fuel blends in a DI diesel engine. Fuel, 157:245-254.
  • Anand, K., Sharma, R. P., Mehta, P. S. (2011). Experimental investigations on combustion, performance and emissions characteristics of neat karanji biodiesel and its methanol blend in a diesel engine. Biomass and Bioenergy, 35(1):533-541.
  • Appavu, P., Venu, H. (2019). Quaternary blends of diesel/biodiesel/vegetable oil/pentanol as a potential alternative feedstock for existing unmodified diesel engine: Performance, combustion and emission characteristics. Energy, 186:115856.
  • Ashok, B., Nanthagopal, K., Saravanan, B., Azad, K., Patel, D., Sudarshan, B., Ramasamy, R. A. (2019a). Study on isobutanol and Calophyllum inophyllum biodiesel as a partial replacement in CI engine applications. Fuel, 235:984-994.
  • Ashok, B., Nanthagopal, K., Darla, S., Chyuan, O. H., Ramesh, A., Jacob, A., Sahil, G., Thiyagarajan, S., Geo, V. E. (2019b). Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel. Energy, 173:494-510.
  • Atmanli, A. (2016). Comparative analyses of diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel, 176:209-215.
  • Atmanli, A., Yilmaz, N. (2018). A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine. Fuel, 234:161-169.
  • Atmanli, A., Yilmaz, N. (2020). An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine. Fuel, 260:116357.
  • Aydın, F., Öğüt, H. (2017). Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions. Renewable Energy, 103:688-694.
  • Babu, D., Anand, R. (2017). Effect of biodiesel-diesel-n-pentanol and biodiesel-diesel-n-hexanol blends on diesel engine emission and combustion characteristics. Energy, 133:761-776.
  • Balamurugan, T., Nalini, R. (2014). Experimental investigation on performance, combustion and emission characteristics of four stroke diesel engine using diesel blended with alcohol as fuel. Energy, 78:356-363.
  • Campos-Fernández, J., Arnal, J. M., Gómez, J., Dorado, M. P. (2012). A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Applied Energy, 95:267-275.
  • Campos-Fernandez, J., Arnal, J. M., Gomez, J., Lacalle, N., Dorado, M. P. (2013). Performance tests of a diesel engine fueled with pentanol/diesel fuel blends. Fuel, 107:866-872.
  • Chen, Z., Liu, J., Han, Z., Du, B., Liu, Y., Lee, C. (2013). Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends. Energy, 55:638-646.
  • Cheung, C. S., Di, Y., Huang, Z. (2008). Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol. Atmospheric Environment, 42(39):8843-8851.
  • Cheung, C. S., Zhu, L., Huang, Z. (2009). Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmospheric Environment, 43(32):4865-4872.
  • Coughlin, B., Hoxie, A. (2017). Combustion characteristics of ternary fuel Blends: Pentanol, butanol and vegetable oil. Fuel, 196:488-496.
  • Çelik, M., Örs, İ., Bayindirli, C., Demiralp, M. (2017). Experimental investigation of impact of addition of bioethanol in different biodiesels, on performance, combustion and emission characteristics. Journal of Mechanical Science and Technology, 31(11):5581-5592.
  • De Poures, M. V., Sathiyagnanam, A. P., Rana, D., Kumar, B. R., Saravanan, S. (2017). 1-Hexanol as a sustainable biofuel in DI diesel engines and its effect on combustion and emissions under the influence of injection timing and exhaust gas recirculation (EGR). Applied Thermal Engineering, 113:1505-1513.
  • Devan, P. K., Mahalakshmi, N. V. (2009). A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil–eucalyptus oil blends. Applied Energy, 86(5):675-680.
  • Doğan, B., Erol, D., Yaman, H., Kodanli, E. (2017). The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Applied Thermal Engineering, 120:433-443.
  • Doğan, O. (2011). The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel, 90(7):2467-2472.
  • Duraisamy, G., Rangasamy, M., Govindan, N. (2020). A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renewable Energy, 145:542-556.
  • El-Seesy, A. I., Abdel-Rahman, A. K., Bady, M., Ookawara, S. J. E. C. (2017). Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives. Energy Conversion and Management, 135:373-393.
  • Emiroğlu, A. O. (2019). Effect of fuel injection pressure on the characteristics of single cylinder diesel engine powered by butanol-diesel blend. Fuel, 256:115928.
  • Emiroğlu, A. O., Şen, M. (2018a). Combustion, performance and emission characteristics of various alcohol blends in a single cylinder diesel engine. Fuel, 212:34-40.
  • Emiroğlu, A. O., Şen, M. (2018b). Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Applied Thermal Engineering, 133:371-380.
  • Geo, V. E., Sonthalia, A., Nagarajan, G., Nagalingam, B. (2017). Studies on performance, combustion and emission of a single cylinder diesel engine fuelled with rubber seed oil and its biodiesel along with ethanol as injected fuel. Fuel, 209:733-741.
  • Hazar, H., Uyar, M. (2015). Experimental investigation of isopropyl alcohol (IPA)/diesel blends in a diesel engine for improved exhaust emissions. International Journal of Automotive Engineering and Technologies, 4(1):1-6.
  • Holman, P. (2012). Experimental Methods for Engineers. Eighth ed. New York, USA: McGraw-Hill.
  • Huang, Z., Lu, H., Jiang, D., Zeng, K., Liu, B., Zhang, J., Wang, X. (2004). Combustion behaviors of a compression-ignition engine fuelled with diesel/methanol blends under various fuel delivery advance angles. Bioresource technology, 95(3):331-341.
  • Hulwan, D. B., Joshi, S. V. (2011). Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content. Applied Energy, 88(12):5042-5055.
  • Ibrahim, A. (2016). Performance and combustion characteristics of a diesel engine fuelled by butanol–biodiesel–diesel blends. Applied Thermal Engineering, 103:651-659.
  • Ileri, E. (2016). Experimental study of 2-ethylhexyl nitrate effects on engine performance and exhaust emissions of a diesel engine fueled with n-butanol or 1-pentanol diesel–sunflower oil blends. Energy Conversion and Management, 118:320-330.
  • Imdadul, H. K., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., Alabdulkarem, A., Kamruzzaman, M., Rashed, M. M. (2016a). A comparative study of C4 and C5 alcohol treated diesel–biodiesel blends in terms of diesel engine performance and exhaust emission. Fuel, 179:281-288.
  • Imdadul, H. K., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., Alabdulkarem, A., Rashed, M. M., Teoh, Y. H., How, H. G. (2016b). Higher alcohol–biodiesel–diesel blends: an approach for improving the performance, emission, and combustion of a light-duty diesel engine. Energy Conversion and Management, 111:174-185.
  • Jamrozik, A., Tutak, W., Gnatowska, R., Nowak, Ł. (2019). Comparative analysis of the combustion stability of diesel-methanol and diesel-ethanol in a dual fuel engine. Energies, 12(6):971.
  • Karabektas, M., Hosoz, M. (2009). Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. Renewable Energy, 34(6):1554-1559.
  • Kattela, S. P., Vysyaraju, R. K. R., Surapaneni, S. R., Ganji, P. R. (2019). Effect of n-butanol/diesel blends and piston bowl geometry on combustion and emission characteristics of CI engine. Environmental Science and Pollution Research, 26(2):1661-1674.
  • Koivisto, E., Ladommatos, N., Gold, M. (2015). Systematic study of the effect of the hydroxyl functional group in alcohol molecules on compression ignition and exhaust gas emissions. Fuel, 153:650-663.
  • Kumar, B. R., Saravanan, S. (2015). Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel, 160:217-226.
  • Kumar, B. R., Saravanan, S. (2016). Use of higher alcohol biofuels in diesel engines: A review. Renewable and Sustainable Energy Reviews, 60:84-115.
  • Kumar, B. R., Saravanan, S., Rana, D., Nagendran, A. (2016). A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine. Energy Conversion and Management, 119:246-256.
  • Kumar, S., Cho, J. H., Park, J., Moon, I. (2013). Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renewable and Sustainable Energy Reviews, 22:46-72.
  • Li, L., Wang, J., Wang, Z., Xiao, J. (2015a) Combustion and emission characteristics of diesel engine fueled with diesel/biodiesel/pentanol fuel blends, Fuel, 156:211-218, 2015a.
  • Li, L., Wang, J., Wang, Z., Liu, H. (2015b). Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol. Energy, 80:575-581.
  • Li, F., Yi, B., Fu, W., Song, L., Liu, T., Hu, H., Lin, Q. (2019). Experimental study on spray characteristics of long-chain alcohol-diesel fuels in a constant volume chamber. Journal of the Energy Institute, 92(1):94-107.
  • Ma, B., Yao, A., Yao, C., Wang, B., Gao, J., Chen, C., Wu, T. (2019). Experimental study on energy balance of different parameters in diesel methanol dual fuel engine. Applied Thermal Engineering, 159:113954.
  • Ma, Y., Huang, S., Huang, R., Zhang, Y., Xu, S. (2017). Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber. Applied Energy, 185:519-530.
  • Machado, H. B., Dekishima, Y., Luo, H., Lan, E. I., Liao, J. C. (2012). A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metabolic engineering, 14(5):504-511.
  • Nabi, M. N., Zare, A., Hossain, F. M., Bodisco, T. A., Ristovski, Z. D., Brown, R. J. (2017). A parametric study on engine performance and emissions with neat diesel and diesel-butanol blends in the 13-Mode European Stationary Cycle. Energy Conversion and Canagement, 148:251-259.
  • Nanthagopal, K., Ashok, B., Saravanan, B., Patel, D., Sudarshan, B., Ramasamy, R. A. (2018). An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum Inophyllum biodiesel. Energy Conversion and Management, 158:70-80.
  • Nanthagopal, K., Ashok, B., Saravanan, B., Pathy, M. R., Sahil, G., Ramesh, A., Nabi, M. N., Rasul, M. G. (2019). Study on decanol and Calophyllum Inophyllum biodiesel as ternary blends in CI engine. Fuel, 239:862-873.
  • Nour, M., Attia, A. M., Nada, S. A. (2019). Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy conversion and management, 185:313-329.
  • Ors, I., Kahraman, A., Ciniviz, M. (2017). Performance, emission and combustion analysis of a compression ignition engine using biofuel blends. Thermal Science, 21(1 Part B):511-522.
  • Özener, O., Yüksek, L., Ergenç, A. T., Özkan, M. (2014). Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 115:875-883.
  • Özer, S. (2010). Bütanol kullanımının dizel motor performansı ve egzoz emisyonlarına etkilerinin deneysel olarak araştırılması. Yüksek Lisans Tezi, Karabük Üniversitesi, Karabük, 2010.
  • Özsezen, A.N., Çanakçı, M., Sayın, C. (2006). Atık kızartma yağı kökenli biyodizelin ön yanma odalı bir dizel motorun emisyonları üzerine etkisi. Biyoyakıt (Biyodizel-Biyoetanol) Sempozyumu, Bursa, 41-51, 29-30 Haziran.
  • Palash, S. M., Kalam, M. A., Masjuki, H. H., Masum, B. M., Fattah, I. R., Mofijur, M. (2013). Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 23:473-490.
  • Pan, M., Huang, R., Liao, J., Jia, C., Zhou, X., Huang, H., Huang, X. (2019). Experimental study of the spray, combustion, and emission performance of a diesel engine with high n-pentanol blending ratios. Energy Conversion and Management, 194:1-10.
  • Pandian, A. K., Munuswamy, D. B., Radhakrishanan, S., Devarajan, Y., Ramakrishnan, R. B. B., Nagappan, B. (2018). Emission and performance analysis of a diesel engine burning cashew nut shell oil bio diesel mixed with hexanol. Petroleum Science, 15(1):176-184.
  • Park, S. H., Cha, J., Lee, C. S. (2012). Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine. Applied Energy, 99:334-343.
  • Pilusa, T. J., Mollagee, M. M., Muzenda, E. (2012). Reduction of vehicle exhaust emissions from diesel engines using the whale concept filter. Aerosol and Air Quality Research, 12(5):994–1006.
  • Qi, D. H., Chen, H., Lee, C. F., Geng, L. M., Bian, Y. Z. (2010a). Experimental studies of a naturally aspirated, DI diesel engine fuelled with ethanol−biodiesel−water microemulsions. Energy & Fuels, 24(1):652-663.
  • Qi, D. H., Chen, H., Geng, L. M., Bian, Y. Z., Ren, X. C. (2010b). Performance and combustion characteristics of biodiesel–diesel–methanol blend fuelled engine. Applied Energy, 87(5):1679-1686.
  • Qi, D. H., Chen, H., Geng, L. M., Bian, Y. Z. (2010c). Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends. Energy Conversion and Management, 51(12):2985-2992.
  • Rajak, U., Nashine, P., Verma, T. N., Pugazhendhi, A. (2019). Alternating the environmental benefits of Aegle-diesel blends used in compression ignition. Fuel, 256:115835.
  • Rajak, U., Verma, T. N. (2018). Spirulina microalgae biodiesel–A novel renewable alternative energy source for compression ignition engine. Journal of Cleaner Production, 201:343-357.
  • Rakopoulos, D. C., Rakopoulos, C. D., Giakoumis, E. G., Dimaratos, A. M., Kyritsis, D. C. (2010). Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Conversion and Management, 51(10):1989-1997.
  • Ramalingam, S., Mahalakshmi, N. V. (2020). Influence of Moringa oleifera biodiesel–diesel–hexanol and biodiesel–diesel–ethanol blends on compression ignition engine performance, combustion and emission characteristics. RSC Advances, 10(8):4274-4285.
  • Ramesh, A., Ashok, B., Nanthagopal, K., Pathy, M. R., Tambare, A., Mali, P., Phuke, P., Patil, S., Subbarao, R. (2019). Influence of hexanol as additive with Calophyllum Inophyllum biodiesel for CI engine applications. Fuel, 249:472-485.
  • Rasskazchikova, T. V., Kapustin, V. M., Karpov, S. A. (2004). Ethanol as high–octane additive to automotive gasolines. production and use in russia and abroad. Chemistry and Technology of Fuels and Oils, 40(4):203-210.
  • Rocha, H. M. Z., da Silva Pereira, R., Nogueira, M. F. M., Belchior, C. R. P., de Lima Tostes, M. E. (2017). Experimental investigation of hydrogen addition in the intake air of compressed ignition engines running on biodiesel blend. International Journal of Hydrogen Energy, 42(7):4530-4539.
  • Sayin, C., Ozsezen, A. N., Canakci, M. (2010). The influence of operating parameters on the performance and emissions of a DI diesel engine using methanol-blended-diesel fuel. Fuel, 89(7):1407-1414.
  • Shrivastava, P., Verma, T. N. (2019). An experimental investigation into engine characteristics fueled with Lal ambari biodiesel and its blends. Thermal Science and Engineering Progress, 100356.
  • Shrivastava, P., Salam, S., Verma, T. N., Samuel, O. D. (2020). Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel. Fuel, 262:116608.
  • Shu, J., Fu, J., Liu, J., Zhang, L., Zhao, Z. (2018). Experimental and computational study on the effects of injection timing on thermodynamics, combustion and emission characteristics of a natural gas (NG)-diesel dual fuel engine at low speed and low load. Energy conversion and management, 160:426-438.
  • Suhaimi, H., Adam, A., Mrwan, A. G., Abdullah, Z., Othman, M. F., Kamaruzzaman, M. K., Hagos, F. Y. (2018). Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends. Fuel, 220:682-691.
  • Sridhar, R., Jeevahan, J., Chandrasekaran, M. (2020). Effect of the addition of 1-pentanol on engine performance and emission characteristics of diesel and biodiesel fuelled single cylinder diesel engine. International Journal of Ambient Energy, 41(1):58-63.
  • Sundar, R. C., Saravanan, G. (2011). Influence of hexanol-diesel blends on constant speed diesel engine. Thermal Science, 15(4):1215-1222.
  • Şahin, Z., Durgun, O., Aksu, O. N. (2015). Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation–evaluation of engine performance, exhaust emissions, heat release and flammability analysis. Energy Conversion and Management, 103:778-789.
  • Tesfa, B., Mishra, R., Gu, F., Powles, N. (2010). Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renewable energy, 35(12):2752-2760.
  • Tse, H., Leung, C. W., Cheung, C. S. (2015). Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy, 83:343-350.
  • Tutak, W., Lukacs, K., Szwaja, S., Bereczky, A. (2015). Alcohol–diesel fuel combustion in the compression ignition engine. Fuel, 154:196-206.
  • Ullman, T. L., Spreen, K. B., Mason, R. L. (1994). Effects of cetane number, cetane improver, aromatics, and oxygenates on 1994 heavy-duty diesel engine emissions. SAE transactions:682-702.
  • Wei, L., Cheung, C. S., Huang, Z. (2014). Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine. Energy, 70:172-180.
  • Wu, F., Xu, B., Liu, Y., Wu, J. (2019). Performance and Emission Characteristics of a Diesel Engine Fueled with Alcohol–Diesel Fuel Blends Containing Low Ratio of Alcohols. Environmental Progress & Sustainable Energy, 38(3):e13035.
  • Xingcai, L., Zhen, H., Wugao, Z., Degang, L. (2004). The influence of ethanol additives on the performance and combustion characteristics of diesel engines. Combustion Science and Technology, 176(8):1309-1329.
  • Yao, M., Wang, H., Zheng, Z., Yue, Y. (2010). Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel, 89(9):2191-2201.
  • Yardım, M. H. (2008). Motor Teknolojisi. Nobel Yayın Dağıtım Tic. Ltd. Şti., Yayın No: 1298, Teknik Bilimler: 101, Ostim, Ankara.
  • Yesilyurt, M. K., Eryilmaz, T., Arslan, M. (2018). A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy, 165:1332-1351.
  • Yilmaz, N., Atmanli, A. (2017a). Experimental evaluation of a diesel engine running on the blends of diesel and pentanol as a next generation higher alcohol. Fuel, 210:75-82.
  • Yilmaz, N., Atmanli, A. (2017b). Experimental assessment of a diesel engine fueled with diesel-biodiesel-1-pentanol blends. Fuel, 191:190-197.
  • Yilmaz, N., Vigil, F. M., Benalil, K., Davis, S. M., Calva, A. (2014). Effect of biodiesel–butanol fuel blends on emissions and performance characteristics of a diesel engine. Fuel, 135:46-50.
  • Yilmaz, N., Atmanli, A., Trujillo, M. (2017). Influence of 1-pentanol additive on the performance of a diesel engine fueled with waste oil methyl ester and diesel fuel. Fuel, 207:461-469.
  • Zhang, K., Sawaya, M. R., Eisenberg, D. S., Liao, J. C. (2008). Expanding metabolism for biosynthesis of non-natural alcohols. Proceedings of the National Academy of Sciences, 105(52):20653-20658.
  • Zhang, Z. H., Balasubramanian, R. (2016). Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends. Applied Energy, 163:71-80.
  • Zhong, W., Xuan, T., He, Z., Wang, Q., Li, D., Zhang, X., Huang, Y. Y. (2016). Experimental study of combustion and emission characteristics of diesel engine with diesel/second-generation biodiesel blending fuels. Energy Conversion and Management, 121:241-250.
  • Zhu, L., Xiao, Y., Cheung, C. S., Guan, C., Huang, Z. (2016). Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel. Applied Thermal Engineering, 102:73-79.

The Effects of Different Higher Alcohols (1-Butanol, 1-Pentanol, 1-Hexanol) Addition into the Diesel Fuel on the Performance, Combustion, and Exhaust Emission Characteristics of a Single-Cylinder Diesel Engine

Year 2020, Volume: 12 Issue: 2, 397 - 426, 30.06.2020
https://doi.org/10.29137/umagd.704961

Abstract

The reduction of petroleum reserves day by day all over the world depending on the increase in petroleum consumption and the reaching serious levels of environmental pollution have led researchers to search alternative and clean energy sources for internal combustion engines. The higher alcohols having four or more carbon atoms in their chemical structure come to the fore for diesel engines due to the negative properties of short-chain alcohols (methanol and ethanol) such as low energy content and cetane number. The aim of this study is to compare the performance, emissions, and combustion characteristics of a single-cylinder, four-stroke, direct injection diesel engine operating with alternative fuels which contains 15% by volume of 1-butanol, 1-pentanol and 1-hexanol alcohols (Bt15: 15% 1-butanol + 85% diesel fuel, Pt15: 15% 1- pentanol + 85% diesel fuel, Hx15: 15% 1-hexanol + 85% diesel fuel) with reference diesel fuel (D100) by testing at a fixed engine speed of 1500 rpm and different loads (25%, 50%, 75%, and 100%). As a result, it is noticed to be that alcohol-infused fuel blends caused to decrease the brake thermal efficiency and increase brake specific fuel consumption due to the lesser calorific values of the alcohols according to the diesel fuel. At 100% engine load, the maximum cylinder pressures were observed as 46.97 bar, 47.76 bar, 48.41 bar, and 48.91 bar, respectively while the peak net heat release rates of D100, Bt15, Pt15, and Hx15 were found to be at 29.55 J/o, 31.14 J/o, 32.66 J/o, and 33.80 J/o, respectively. Besides, it is determined that the ignition delay period of the alcohol-treated fuel blends is generally extended as compared to the diesel fuel because of the lower cetane number of alcohol. CO2 and O2 emissions increased with the addition of alcohol to diesel fuel while CO, HC and NOX emissions as well as exhaust gas temperatures reduced. When all experimental results were evaluated, it could be noted that the Hx15 blend gave the best results in terms of performance, emissions and combustion properties.

References

  • Acaroğlu, M., Aydoğan, H., Özçelik, A. E. (2018). Yakıtlar ve Yanma. Nobel Yayın Dağıtım Tic. Ltd. Şti., Yayın No: 2143, Teknik Bilimler: 177, Ostim, Ankara, 2. Basım. ISBN: 978-605-7928-52-8.
  • Ağbulut, Ü., Sarıdemir, S., Albayrak, S. (2019). Experimental investigation of combustion, performance and emission characteristics of a diesel engine fuelled with diesel–biodiesel–alcohol blends. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(9):389.
  • Aksoy, F., Bayrakçeken, H. (2010). Dizel Yakıtına% 5 ve % 10 İzopropil Alkol (IPA) İlavesinin Motor Performans ve Emisyonlarına Etkisi. Taşıt Teknolojileri Elektronik Dergisi, 2(3):37-43.
  • Alagumalai, A. (2015). Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine. Alexandria Engineering Journal, 54(3):405-413.
  • Aloko, D., Adebayo, G. A., Oke, O. E. (2007). Evaluation of diesel-hexanol blend as diesel fuel. Leonardo Electronic Journal of Practices and Technologies, 10(6):151-156.
  • Alptekin, E. (2017). Evaluation of ethanol and isopropanol as additives with diesel fuel in a CRDI diesel engine. Fuel, 205:161-172.
  • Alptekin, E., Canakci, M., Ozsezen, A. N., Turkcan, A., Sanli, H. (2015). Using waste animal fat based biodiesels–bioethanol–diesel fuel blends in a DI diesel engine. Fuel, 157:245-254.
  • Anand, K., Sharma, R. P., Mehta, P. S. (2011). Experimental investigations on combustion, performance and emissions characteristics of neat karanji biodiesel and its methanol blend in a diesel engine. Biomass and Bioenergy, 35(1):533-541.
  • Appavu, P., Venu, H. (2019). Quaternary blends of diesel/biodiesel/vegetable oil/pentanol as a potential alternative feedstock for existing unmodified diesel engine: Performance, combustion and emission characteristics. Energy, 186:115856.
  • Ashok, B., Nanthagopal, K., Saravanan, B., Azad, K., Patel, D., Sudarshan, B., Ramasamy, R. A. (2019a). Study on isobutanol and Calophyllum inophyllum biodiesel as a partial replacement in CI engine applications. Fuel, 235:984-994.
  • Ashok, B., Nanthagopal, K., Darla, S., Chyuan, O. H., Ramesh, A., Jacob, A., Sahil, G., Thiyagarajan, S., Geo, V. E. (2019b). Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel. Energy, 173:494-510.
  • Atmanli, A. (2016). Comparative analyses of diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine. Fuel, 176:209-215.
  • Atmanli, A., Yilmaz, N. (2018). A comparative analysis of n-butanol/diesel and 1-pentanol/diesel blends in a compression ignition engine. Fuel, 234:161-169.
  • Atmanli, A., Yilmaz, N. (2020). An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine. Fuel, 260:116357.
  • Aydın, F., Öğüt, H. (2017). Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions. Renewable Energy, 103:688-694.
  • Babu, D., Anand, R. (2017). Effect of biodiesel-diesel-n-pentanol and biodiesel-diesel-n-hexanol blends on diesel engine emission and combustion characteristics. Energy, 133:761-776.
  • Balamurugan, T., Nalini, R. (2014). Experimental investigation on performance, combustion and emission characteristics of four stroke diesel engine using diesel blended with alcohol as fuel. Energy, 78:356-363.
  • Campos-Fernández, J., Arnal, J. M., Gómez, J., Dorado, M. P. (2012). A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine. Applied Energy, 95:267-275.
  • Campos-Fernandez, J., Arnal, J. M., Gomez, J., Lacalle, N., Dorado, M. P. (2013). Performance tests of a diesel engine fueled with pentanol/diesel fuel blends. Fuel, 107:866-872.
  • Chen, Z., Liu, J., Han, Z., Du, B., Liu, Y., Lee, C. (2013). Study on performance and emissions of a passenger-car diesel engine fueled with butanol–diesel blends. Energy, 55:638-646.
  • Cheung, C. S., Di, Y., Huang, Z. (2008). Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol. Atmospheric Environment, 42(39):8843-8851.
  • Cheung, C. S., Zhu, L., Huang, Z. (2009). Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol. Atmospheric Environment, 43(32):4865-4872.
  • Coughlin, B., Hoxie, A. (2017). Combustion characteristics of ternary fuel Blends: Pentanol, butanol and vegetable oil. Fuel, 196:488-496.
  • Çelik, M., Örs, İ., Bayindirli, C., Demiralp, M. (2017). Experimental investigation of impact of addition of bioethanol in different biodiesels, on performance, combustion and emission characteristics. Journal of Mechanical Science and Technology, 31(11):5581-5592.
  • De Poures, M. V., Sathiyagnanam, A. P., Rana, D., Kumar, B. R., Saravanan, S. (2017). 1-Hexanol as a sustainable biofuel in DI diesel engines and its effect on combustion and emissions under the influence of injection timing and exhaust gas recirculation (EGR). Applied Thermal Engineering, 113:1505-1513.
  • Devan, P. K., Mahalakshmi, N. V. (2009). A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil–eucalyptus oil blends. Applied Energy, 86(5):675-680.
  • Doğan, B., Erol, D., Yaman, H., Kodanli, E. (2017). The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Applied Thermal Engineering, 120:433-443.
  • Doğan, O. (2011). The influence of n-butanol/diesel fuel blends utilization on a small diesel engine performance and emissions. Fuel, 90(7):2467-2472.
  • Duraisamy, G., Rangasamy, M., Govindan, N. (2020). A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renewable Energy, 145:542-556.
  • El-Seesy, A. I., Abdel-Rahman, A. K., Bady, M., Ookawara, S. J. E. C. (2017). Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives. Energy Conversion and Management, 135:373-393.
  • Emiroğlu, A. O. (2019). Effect of fuel injection pressure on the characteristics of single cylinder diesel engine powered by butanol-diesel blend. Fuel, 256:115928.
  • Emiroğlu, A. O., Şen, M. (2018a). Combustion, performance and emission characteristics of various alcohol blends in a single cylinder diesel engine. Fuel, 212:34-40.
  • Emiroğlu, A. O., Şen, M. (2018b). Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Applied Thermal Engineering, 133:371-380.
  • Geo, V. E., Sonthalia, A., Nagarajan, G., Nagalingam, B. (2017). Studies on performance, combustion and emission of a single cylinder diesel engine fuelled with rubber seed oil and its biodiesel along with ethanol as injected fuel. Fuel, 209:733-741.
  • Hazar, H., Uyar, M. (2015). Experimental investigation of isopropyl alcohol (IPA)/diesel blends in a diesel engine for improved exhaust emissions. International Journal of Automotive Engineering and Technologies, 4(1):1-6.
  • Holman, P. (2012). Experimental Methods for Engineers. Eighth ed. New York, USA: McGraw-Hill.
  • Huang, Z., Lu, H., Jiang, D., Zeng, K., Liu, B., Zhang, J., Wang, X. (2004). Combustion behaviors of a compression-ignition engine fuelled with diesel/methanol blends under various fuel delivery advance angles. Bioresource technology, 95(3):331-341.
  • Hulwan, D. B., Joshi, S. V. (2011). Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content. Applied Energy, 88(12):5042-5055.
  • Ibrahim, A. (2016). Performance and combustion characteristics of a diesel engine fuelled by butanol–biodiesel–diesel blends. Applied Thermal Engineering, 103:651-659.
  • Ileri, E. (2016). Experimental study of 2-ethylhexyl nitrate effects on engine performance and exhaust emissions of a diesel engine fueled with n-butanol or 1-pentanol diesel–sunflower oil blends. Energy Conversion and Management, 118:320-330.
  • Imdadul, H. K., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., Alabdulkarem, A., Kamruzzaman, M., Rashed, M. M. (2016a). A comparative study of C4 and C5 alcohol treated diesel–biodiesel blends in terms of diesel engine performance and exhaust emission. Fuel, 179:281-288.
  • Imdadul, H. K., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., Alabdulkarem, A., Rashed, M. M., Teoh, Y. H., How, H. G. (2016b). Higher alcohol–biodiesel–diesel blends: an approach for improving the performance, emission, and combustion of a light-duty diesel engine. Energy Conversion and Management, 111:174-185.
  • Jamrozik, A., Tutak, W., Gnatowska, R., Nowak, Ł. (2019). Comparative analysis of the combustion stability of diesel-methanol and diesel-ethanol in a dual fuel engine. Energies, 12(6):971.
  • Karabektas, M., Hosoz, M. (2009). Performance and emission characteristics of a diesel engine using isobutanol–diesel fuel blends. Renewable Energy, 34(6):1554-1559.
  • Kattela, S. P., Vysyaraju, R. K. R., Surapaneni, S. R., Ganji, P. R. (2019). Effect of n-butanol/diesel blends and piston bowl geometry on combustion and emission characteristics of CI engine. Environmental Science and Pollution Research, 26(2):1661-1674.
  • Koivisto, E., Ladommatos, N., Gold, M. (2015). Systematic study of the effect of the hydroxyl functional group in alcohol molecules on compression ignition and exhaust gas emissions. Fuel, 153:650-663.
  • Kumar, B. R., Saravanan, S. (2015). Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel, 160:217-226.
  • Kumar, B. R., Saravanan, S. (2016). Use of higher alcohol biofuels in diesel engines: A review. Renewable and Sustainable Energy Reviews, 60:84-115.
  • Kumar, B. R., Saravanan, S., Rana, D., Nagendran, A. (2016). A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine. Energy Conversion and Management, 119:246-256.
  • Kumar, S., Cho, J. H., Park, J., Moon, I. (2013). Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines. Renewable and Sustainable Energy Reviews, 22:46-72.
  • Li, L., Wang, J., Wang, Z., Xiao, J. (2015a) Combustion and emission characteristics of diesel engine fueled with diesel/biodiesel/pentanol fuel blends, Fuel, 156:211-218, 2015a.
  • Li, L., Wang, J., Wang, Z., Liu, H. (2015b). Combustion and emissions of compression ignition in a direct injection diesel engine fueled with pentanol. Energy, 80:575-581.
  • Li, F., Yi, B., Fu, W., Song, L., Liu, T., Hu, H., Lin, Q. (2019). Experimental study on spray characteristics of long-chain alcohol-diesel fuels in a constant volume chamber. Journal of the Energy Institute, 92(1):94-107.
  • Ma, B., Yao, A., Yao, C., Wang, B., Gao, J., Chen, C., Wu, T. (2019). Experimental study on energy balance of different parameters in diesel methanol dual fuel engine. Applied Thermal Engineering, 159:113954.
  • Ma, Y., Huang, S., Huang, R., Zhang, Y., Xu, S. (2017). Ignition and combustion characteristics of n-pentanol–diesel blends in a constant volume chamber. Applied Energy, 185:519-530.
  • Machado, H. B., Dekishima, Y., Luo, H., Lan, E. I., Liao, J. C. (2012). A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metabolic engineering, 14(5):504-511.
  • Nabi, M. N., Zare, A., Hossain, F. M., Bodisco, T. A., Ristovski, Z. D., Brown, R. J. (2017). A parametric study on engine performance and emissions with neat diesel and diesel-butanol blends in the 13-Mode European Stationary Cycle. Energy Conversion and Canagement, 148:251-259.
  • Nanthagopal, K., Ashok, B., Saravanan, B., Patel, D., Sudarshan, B., Ramasamy, R. A. (2018). An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum Inophyllum biodiesel. Energy Conversion and Management, 158:70-80.
  • Nanthagopal, K., Ashok, B., Saravanan, B., Pathy, M. R., Sahil, G., Ramesh, A., Nabi, M. N., Rasul, M. G. (2019). Study on decanol and Calophyllum Inophyllum biodiesel as ternary blends in CI engine. Fuel, 239:862-873.
  • Nour, M., Attia, A. M., Nada, S. A. (2019). Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy conversion and management, 185:313-329.
  • Ors, I., Kahraman, A., Ciniviz, M. (2017). Performance, emission and combustion analysis of a compression ignition engine using biofuel blends. Thermal Science, 21(1 Part B):511-522.
  • Özener, O., Yüksek, L., Ergenç, A. T., Özkan, M. (2014). Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 115:875-883.
  • Özer, S. (2010). Bütanol kullanımının dizel motor performansı ve egzoz emisyonlarına etkilerinin deneysel olarak araştırılması. Yüksek Lisans Tezi, Karabük Üniversitesi, Karabük, 2010.
  • Özsezen, A.N., Çanakçı, M., Sayın, C. (2006). Atık kızartma yağı kökenli biyodizelin ön yanma odalı bir dizel motorun emisyonları üzerine etkisi. Biyoyakıt (Biyodizel-Biyoetanol) Sempozyumu, Bursa, 41-51, 29-30 Haziran.
  • Palash, S. M., Kalam, M. A., Masjuki, H. H., Masum, B. M., Fattah, I. R., Mofijur, M. (2013). Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renewable and Sustainable Energy Reviews, 23:473-490.
  • Pan, M., Huang, R., Liao, J., Jia, C., Zhou, X., Huang, H., Huang, X. (2019). Experimental study of the spray, combustion, and emission performance of a diesel engine with high n-pentanol blending ratios. Energy Conversion and Management, 194:1-10.
  • Pandian, A. K., Munuswamy, D. B., Radhakrishanan, S., Devarajan, Y., Ramakrishnan, R. B. B., Nagappan, B. (2018). Emission and performance analysis of a diesel engine burning cashew nut shell oil bio diesel mixed with hexanol. Petroleum Science, 15(1):176-184.
  • Park, S. H., Cha, J., Lee, C. S. (2012). Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine. Applied Energy, 99:334-343.
  • Pilusa, T. J., Mollagee, M. M., Muzenda, E. (2012). Reduction of vehicle exhaust emissions from diesel engines using the whale concept filter. Aerosol and Air Quality Research, 12(5):994–1006.
  • Qi, D. H., Chen, H., Lee, C. F., Geng, L. M., Bian, Y. Z. (2010a). Experimental studies of a naturally aspirated, DI diesel engine fuelled with ethanol−biodiesel−water microemulsions. Energy & Fuels, 24(1):652-663.
  • Qi, D. H., Chen, H., Geng, L. M., Bian, Y. Z., Ren, X. C. (2010b). Performance and combustion characteristics of biodiesel–diesel–methanol blend fuelled engine. Applied Energy, 87(5):1679-1686.
  • Qi, D. H., Chen, H., Geng, L. M., Bian, Y. Z. (2010c). Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends. Energy Conversion and Management, 51(12):2985-2992.
  • Rajak, U., Nashine, P., Verma, T. N., Pugazhendhi, A. (2019). Alternating the environmental benefits of Aegle-diesel blends used in compression ignition. Fuel, 256:115835.
  • Rajak, U., Verma, T. N. (2018). Spirulina microalgae biodiesel–A novel renewable alternative energy source for compression ignition engine. Journal of Cleaner Production, 201:343-357.
  • Rakopoulos, D. C., Rakopoulos, C. D., Giakoumis, E. G., Dimaratos, A. M., Kyritsis, D. C. (2010). Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Conversion and Management, 51(10):1989-1997.
  • Ramalingam, S., Mahalakshmi, N. V. (2020). Influence of Moringa oleifera biodiesel–diesel–hexanol and biodiesel–diesel–ethanol blends on compression ignition engine performance, combustion and emission characteristics. RSC Advances, 10(8):4274-4285.
  • Ramesh, A., Ashok, B., Nanthagopal, K., Pathy, M. R., Tambare, A., Mali, P., Phuke, P., Patil, S., Subbarao, R. (2019). Influence of hexanol as additive with Calophyllum Inophyllum biodiesel for CI engine applications. Fuel, 249:472-485.
  • Rasskazchikova, T. V., Kapustin, V. M., Karpov, S. A. (2004). Ethanol as high–octane additive to automotive gasolines. production and use in russia and abroad. Chemistry and Technology of Fuels and Oils, 40(4):203-210.
  • Rocha, H. M. Z., da Silva Pereira, R., Nogueira, M. F. M., Belchior, C. R. P., de Lima Tostes, M. E. (2017). Experimental investigation of hydrogen addition in the intake air of compressed ignition engines running on biodiesel blend. International Journal of Hydrogen Energy, 42(7):4530-4539.
  • Sayin, C., Ozsezen, A. N., Canakci, M. (2010). The influence of operating parameters on the performance and emissions of a DI diesel engine using methanol-blended-diesel fuel. Fuel, 89(7):1407-1414.
  • Shrivastava, P., Verma, T. N. (2019). An experimental investigation into engine characteristics fueled with Lal ambari biodiesel and its blends. Thermal Science and Engineering Progress, 100356.
  • Shrivastava, P., Salam, S., Verma, T. N., Samuel, O. D. (2020). Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel. Fuel, 262:116608.
  • Shu, J., Fu, J., Liu, J., Zhang, L., Zhao, Z. (2018). Experimental and computational study on the effects of injection timing on thermodynamics, combustion and emission characteristics of a natural gas (NG)-diesel dual fuel engine at low speed and low load. Energy conversion and management, 160:426-438.
  • Suhaimi, H., Adam, A., Mrwan, A. G., Abdullah, Z., Othman, M. F., Kamaruzzaman, M. K., Hagos, F. Y. (2018). Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends. Fuel, 220:682-691.
  • Sridhar, R., Jeevahan, J., Chandrasekaran, M. (2020). Effect of the addition of 1-pentanol on engine performance and emission characteristics of diesel and biodiesel fuelled single cylinder diesel engine. International Journal of Ambient Energy, 41(1):58-63.
  • Sundar, R. C., Saravanan, G. (2011). Influence of hexanol-diesel blends on constant speed diesel engine. Thermal Science, 15(4):1215-1222.
  • Şahin, Z., Durgun, O., Aksu, O. N. (2015). Experimental investigation of n-butanol/diesel fuel blends and n-butanol fumigation–evaluation of engine performance, exhaust emissions, heat release and flammability analysis. Energy Conversion and Management, 103:778-789.
  • Tesfa, B., Mishra, R., Gu, F., Powles, N. (2010). Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renewable energy, 35(12):2752-2760.
  • Tse, H., Leung, C. W., Cheung, C. S. (2015). Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy, 83:343-350.
  • Tutak, W., Lukacs, K., Szwaja, S., Bereczky, A. (2015). Alcohol–diesel fuel combustion in the compression ignition engine. Fuel, 154:196-206.
  • Ullman, T. L., Spreen, K. B., Mason, R. L. (1994). Effects of cetane number, cetane improver, aromatics, and oxygenates on 1994 heavy-duty diesel engine emissions. SAE transactions:682-702.
  • Wei, L., Cheung, C. S., Huang, Z. (2014). Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine. Energy, 70:172-180.
  • Wu, F., Xu, B., Liu, Y., Wu, J. (2019). Performance and Emission Characteristics of a Diesel Engine Fueled with Alcohol–Diesel Fuel Blends Containing Low Ratio of Alcohols. Environmental Progress & Sustainable Energy, 38(3):e13035.
  • Xingcai, L., Zhen, H., Wugao, Z., Degang, L. (2004). The influence of ethanol additives on the performance and combustion characteristics of diesel engines. Combustion Science and Technology, 176(8):1309-1329.
  • Yao, M., Wang, H., Zheng, Z., Yue, Y. (2010). Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel, 89(9):2191-2201.
  • Yardım, M. H. (2008). Motor Teknolojisi. Nobel Yayın Dağıtım Tic. Ltd. Şti., Yayın No: 1298, Teknik Bilimler: 101, Ostim, Ankara.
  • Yesilyurt, M. K., Eryilmaz, T., Arslan, M. (2018). A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy, 165:1332-1351.
  • Yilmaz, N., Atmanli, A. (2017a). Experimental evaluation of a diesel engine running on the blends of diesel and pentanol as a next generation higher alcohol. Fuel, 210:75-82.
  • Yilmaz, N., Atmanli, A. (2017b). Experimental assessment of a diesel engine fueled with diesel-biodiesel-1-pentanol blends. Fuel, 191:190-197.
  • Yilmaz, N., Vigil, F. M., Benalil, K., Davis, S. M., Calva, A. (2014). Effect of biodiesel–butanol fuel blends on emissions and performance characteristics of a diesel engine. Fuel, 135:46-50.
  • Yilmaz, N., Atmanli, A., Trujillo, M. (2017). Influence of 1-pentanol additive on the performance of a diesel engine fueled with waste oil methyl ester and diesel fuel. Fuel, 207:461-469.
  • Zhang, K., Sawaya, M. R., Eisenberg, D. S., Liao, J. C. (2008). Expanding metabolism for biosynthesis of non-natural alcohols. Proceedings of the National Academy of Sciences, 105(52):20653-20658.
  • Zhang, Z. H., Balasubramanian, R. (2016). Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends. Applied Energy, 163:71-80.
  • Zhong, W., Xuan, T., He, Z., Wang, Q., Li, D., Zhang, X., Huang, Y. Y. (2016). Experimental study of combustion and emission characteristics of diesel engine with diesel/second-generation biodiesel blending fuels. Energy Conversion and Management, 121:241-250.
  • Zhu, L., Xiao, Y., Cheung, C. S., Guan, C., Huang, Z. (2016). Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel. Applied Thermal Engineering, 102:73-79.
There are 105 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Murat Kadir Yeşilyurt 0000-0003-0870-7564

Publication Date June 30, 2020
Submission Date March 17, 2020
Published in Issue Year 2020 Volume: 12 Issue: 2

Cite

APA Yeşilyurt, M. K. (2020). Dizel Yakıtına Farklı Ağır Alkoller (1-Bütanol, 1-Pentanol ve 1-Hekzanol) İlave Edilmesinin Tek Silindirli Bir Dizel Motorunun Performans, Yanma ve Egzoz Emisyon Karakteristiklerine Etkileri. International Journal of Engineering Research and Development, 12(2), 397-426. https://doi.org/10.29137/umagd.704961

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.