Araştırma Makalesi
BibTex RIS Kaynak Göster

Konya İlinde Bir Fabrikanın Enerji Talebinin Karşılanması için Hibrit Enerji Üretim Sisteminin Analiz ve Tasarımı

Yıl 2021, Cilt: 13 Sayı: 1, 220 - 230, 18.01.2021
https://doi.org/10.29137/umagd.794898

Öz

Yenilenebilir enerji kaynaklarının dezavantajlarını yok etmek adına kullanılan hibrit enerji üretim sistemleri giderek yaygınlaşmaktadır. Çalışmamızda Konya ilindeki bir fabrikanın enerji ihtiyacını karşılamak için, şebekeye bağlı fotovoltaik (FV) güneş enerjisi sistemi, akü ve dizel jeneratörden oluşan hibrit bir sistem Çoklu Enerji Kaynakları İçin Hibrid Optimizasyonu (HOMER) yazılımı kullanılarak analiz edilmiş ve tasarlanmıştır. Analiz yapılırken, Konya’nın coğrafi pozisyonu, fabrikanın fiziksel ve ekonomik kısıtları gibi özellikler göz önünde bulundurulmuştur. Sistemin analiz ve tasarımı yapıldıktan sonra yıllar içerisinde gerçekleşmesi muhtemel FV panellerdeki verim düşümü, yükteki artış ve elektrik kesintileri gibi durumların sisteme olan etkisi incelenmiştir. Çalışmada sistemin ömrü 25 yıl olarak alınmış ve değerlendirme kriterleri olarak net bugünkü maliyet (NBM) ve enerji maliyeti gibi parametreler göz önünde bulundurulmuştur. Fabrikanın günlük ortalama 1000 kWh olan elektrik ihtiyacının karşılanabilmesi için 3500 kW gücünde güneş paneli, 2400 kW gücünde dizel jeneratör, 55 kWh kapasitede batarya ve 2885 kW gücünde konvertör önerilmiştir. Bu sistemin NBM değeri 7.81 M$ olup yatırım maliyeti 1.94 M$ seviyesindedir. FV panellerde gerçekleşen %0.81’lik yıllık verim kaybı düşünüldüğü takdirde NBM %7.94, enerji maliyeti %11.16 oranında artmış ve sistemdeki yenilenebilir enerji kaynakları (YEK) oranı %5.74 oranında azalmıştır. Elektrik enerjisi talebinin artış oranı yıllık %2 olarak düşünüldüğü zaman NBM %42.13, enerji maliyeti %24.29 artmış ve sistemdeki YEK oranı %14.34 oranında azalmıştır. Sanayide gerçekleşen elektrik kesintilerinin değerlendirildiği durumda NBM %2.56, enerji maliyeti %2.84 artmıştır. Bu durumda sistemdeki YEK oranı %0.61 azalmıştır. Sonuç olarak önerilen hibrit enerji üretim sistemi ile fabrikanın elektrik ihtiyacı kesinti olmadan güvenilir şekilde sağlanabilecektir.

Kaynakça

  • Baneshi, M., & Hadianfard, F. (2016). Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Conversion and Management, 127, 233–244. https://doi.org/10.1016/j.enconman.2016.09.008
  • Bhattacharjee, S., & Acharya, S. (2015). PV-wind hybrid power option for a low wind topography. Energy Conversion and Management, 89, 942–954. https://doi.org/10.1016/j.enconman.2014.10.065
  • Copper, J. K., Jongjenkit, K., & Bruce, A. (n.d.). Calculation of PV System Degradation Rates in a Hot Dry Climate Calculation of PV System Degradation Rates in a Hot Dry Climate. Canberra, Australia: Asia Pacific Solar Research Conference.
  • Duman, A. C., & Güler, Ö. (2020). Economic analysis of grid-connected residential rooftop PV systems in Turkey. Renewable Energy, 148, 697–711. https://doi.org/10.1016/j.renene.2019.10.157
  • Gao, F., & Iravani, M. R. (2008). A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Transactions on Power Delivery, 23(2), 850–859. https://doi.org/10.1109/TPWRD.2007.915950
  • HOMER Energy LLC. (2016). HOMER Pro Version 3.7 User Manual. HOMER Energy, (August), 416. Retrieved from http://www.homerenergy.com/pdf/HOMERHelpManual.pdf
  • HOMER Pro. (2020). Retrieved June 11, 2020, from https://www.homerenergy.com/
  • Kalamaras, E., Belekoukia, M., Lin, Z., Xu, B., Wang, H., & Xuan, J. (2019). Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands. Energy Procedia, 158, 6315–6320. https://doi.org/10.1016/j.egypro.2019.01.406
  • Kasaeian, A., Rahdan, P., Rad, M. A. V., & Yan, W. M. (2019). Optimal design and technical analysis of a grid-connected hybrid photovoltaic/diesel/biogas under different economic conditions: A case study. Energy Conversion and Management, 198(July), 111810. https://doi.org/10.1016/j.enconman.2019.111810
  • Khan, M. J., Yadav, A. K., & Mathew, L. (2017). Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India. Renewable and Sustainable Energy Reviews, 76(December 2015), 577–607. https://doi.org/10.1016/j.rser.2017.03.076
  • Kumar, P., Pukale, R., Kumabhar, N., & Patil, U. (2016). Optimal Design Configuration Using HOMER. Procedia Technology, 24, 499–504. https://doi.org/10.1016/j.protcy.2016.05.085
  • Rajbongshi, R., Borgohain, D., & Mahapatra, S. (2017). Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy, 126, 461–474. https://doi.org/10.1016/j.energy.2017.03.056
  • Ramli, M. A. M., Hiendro, A., Sedraoui, K., & Twaha, S. (2015). Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renewable Energy, 75, 489–495. https://doi.org/10.1016/j.renene.2014.10.028
  • Rousis, A. O., Tzelepis, D., Konstantelos, I., Booth, C., & Strbac, G. (2018). Design of a hybrid ac/dc microgrid using homer pro: Case study on an islanded residential application. Inventions, 3(3), 1–14. https://doi.org/10.3390/inventions3030055
  • Schwaegerl, C., & Tao, L. (2014). The Microgrids Concept. In N. Hatziargyriou (Ed.), Microgrids: Architectures and Control. Retrieved from https://books.google.se/books?hl=en&lr=&id=ywxzAgAAQBAJ&oi=fnd&pg=PR13&dq=definition+microgrid&ots=9qw9FFQEvc&sig=W80TOKQYUF1CGi0lb3IMH2gZx3E&redir_esc=y#v=onepage&q=definition microgrid&f=false
  • Sezen, İ., Sakarya, S., Topcu, S., Aksoy, B., & Incecik, S. (2013). Investigation of changes in global solar radiation for clear sky days by clearness index for the Marmara and Southeastern Anatolia regions of Turkey. 24–26. İstanbul: 6th Atmospheric Science Symposium.
  • Shahzad, M. K., Zahid, A., Rashid, T., Rehan, M. A., Ali, M., & Ahmad, M. (2017). Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable Energy, 106, 264–273. https://doi.org/10.1016/j.renene.2017.01.033
  • Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205. https://doi.org/10.1016/j.rser.2014.01.035
  • Tabak, A., Kayabasi, E., Guneser, M. T., & Ozkaymak, M. (2019). Grey wolf optimization for optimum sizing and controlling of a PV/WT/BM hybrid energy system considering TNPC, LPSP, and LCOE concepts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.1668880
  • Tabak, Abdülsamed, Özkaymak, M., Tahir, M., & Oktay, H. (2017). Optimization and Evaluation of Hybrid PV/WT/BM System in Different Initial Costs and LPSP Conditions. International Journal of Advanced Computer Science and Applications, 8(11), 123–131. https://doi.org/10.14569/ijacsa.2017.081116

Analysis and Design of a Hybrid Energy Production System to Meet the Energy Demand of a Plant in Konya

Yıl 2021, Cilt: 13 Sayı: 1, 220 - 230, 18.01.2021
https://doi.org/10.29137/umagd.794898

Öz

Hybrid energy generation systems, which are used to eliminate the disadvantages of renewable energy sources, are becoming increasingly widespread. In our study, in order to meet the energy demand of a plant in Konya city, a hybrid system consisting of grid-connected photovoltaic (PV) solar energy system, battery and diesel generator was analysed and designed using the Hybrid Optimization of Multiple Energy Resources (HOMER) software. While analysing, features such as the geographical location of Konya and physical and economic constraints of the plant were taken into consideration. After the analysis and design of the system, the effects of the conditions such as decrease in efficiency in the PV panels, increase in load and power outages that are likely to occur over the years were examined. In the study, the life of the system was taken as 25 years and parameters such as net present cost (NPC) and energy cost were taken into consideration as evaluation criteria. In order to meet the daily electricity consumption of the plant with an average of 1000 kWh, a 3500 kW solar panel, a 2400 kW diesel generator, a 55 kWh battery and a 2885 kW converter was proposed. The NPC value of this system is 7.81 M$ and the investment cost is 1.94 M$. Considering the annual yield loss of 0.81% in PV panels, NPC increased by 7.94%, energy cost increased by 11.16%, and the rate of renewable energy resources (RES) in the system decreased by 5.74%. When the increase rate of electricity demand is considered as 2% annually, NPC increased by 42.13%, energy cost increased by 24.29% and the RES ratio in the system decreased by 14.34%. When the electricity outages in plant are evaluated, NPC increased by 2.56% and energy cost increased by 2.84%. In this case, the RES rate in the system decreased by 0.61%. As a result, with the proposed hybrid energy production system, the electricity requirement of the plant can be reliably met without interruption.

Kaynakça

  • Baneshi, M., & Hadianfard, F. (2016). Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Conversion and Management, 127, 233–244. https://doi.org/10.1016/j.enconman.2016.09.008
  • Bhattacharjee, S., & Acharya, S. (2015). PV-wind hybrid power option for a low wind topography. Energy Conversion and Management, 89, 942–954. https://doi.org/10.1016/j.enconman.2014.10.065
  • Copper, J. K., Jongjenkit, K., & Bruce, A. (n.d.). Calculation of PV System Degradation Rates in a Hot Dry Climate Calculation of PV System Degradation Rates in a Hot Dry Climate. Canberra, Australia: Asia Pacific Solar Research Conference.
  • Duman, A. C., & Güler, Ö. (2020). Economic analysis of grid-connected residential rooftop PV systems in Turkey. Renewable Energy, 148, 697–711. https://doi.org/10.1016/j.renene.2019.10.157
  • Gao, F., & Iravani, M. R. (2008). A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Transactions on Power Delivery, 23(2), 850–859. https://doi.org/10.1109/TPWRD.2007.915950
  • HOMER Energy LLC. (2016). HOMER Pro Version 3.7 User Manual. HOMER Energy, (August), 416. Retrieved from http://www.homerenergy.com/pdf/HOMERHelpManual.pdf
  • HOMER Pro. (2020). Retrieved June 11, 2020, from https://www.homerenergy.com/
  • Kalamaras, E., Belekoukia, M., Lin, Z., Xu, B., Wang, H., & Xuan, J. (2019). Techno-economic Assessment of a Hybrid Off-grid DC System for Combined Heat and Power Generation in Remote Islands. Energy Procedia, 158, 6315–6320. https://doi.org/10.1016/j.egypro.2019.01.406
  • Kasaeian, A., Rahdan, P., Rad, M. A. V., & Yan, W. M. (2019). Optimal design and technical analysis of a grid-connected hybrid photovoltaic/diesel/biogas under different economic conditions: A case study. Energy Conversion and Management, 198(July), 111810. https://doi.org/10.1016/j.enconman.2019.111810
  • Khan, M. J., Yadav, A. K., & Mathew, L. (2017). Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India. Renewable and Sustainable Energy Reviews, 76(December 2015), 577–607. https://doi.org/10.1016/j.rser.2017.03.076
  • Kumar, P., Pukale, R., Kumabhar, N., & Patil, U. (2016). Optimal Design Configuration Using HOMER. Procedia Technology, 24, 499–504. https://doi.org/10.1016/j.protcy.2016.05.085
  • Rajbongshi, R., Borgohain, D., & Mahapatra, S. (2017). Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER. Energy, 126, 461–474. https://doi.org/10.1016/j.energy.2017.03.056
  • Ramli, M. A. M., Hiendro, A., Sedraoui, K., & Twaha, S. (2015). Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renewable Energy, 75, 489–495. https://doi.org/10.1016/j.renene.2014.10.028
  • Rousis, A. O., Tzelepis, D., Konstantelos, I., Booth, C., & Strbac, G. (2018). Design of a hybrid ac/dc microgrid using homer pro: Case study on an islanded residential application. Inventions, 3(3), 1–14. https://doi.org/10.3390/inventions3030055
  • Schwaegerl, C., & Tao, L. (2014). The Microgrids Concept. In N. Hatziargyriou (Ed.), Microgrids: Architectures and Control. Retrieved from https://books.google.se/books?hl=en&lr=&id=ywxzAgAAQBAJ&oi=fnd&pg=PR13&dq=definition+microgrid&ots=9qw9FFQEvc&sig=W80TOKQYUF1CGi0lb3IMH2gZx3E&redir_esc=y#v=onepage&q=definition microgrid&f=false
  • Sezen, İ., Sakarya, S., Topcu, S., Aksoy, B., & Incecik, S. (2013). Investigation of changes in global solar radiation for clear sky days by clearness index for the Marmara and Southeastern Anatolia regions of Turkey. 24–26. İstanbul: 6th Atmospheric Science Symposium.
  • Shahzad, M. K., Zahid, A., Rashid, T., Rehan, M. A., Ali, M., & Ahmad, M. (2017). Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable Energy, 106, 264–273. https://doi.org/10.1016/j.renene.2017.01.033
  • Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205. https://doi.org/10.1016/j.rser.2014.01.035
  • Tabak, A., Kayabasi, E., Guneser, M. T., & Ozkaymak, M. (2019). Grey wolf optimization for optimum sizing and controlling of a PV/WT/BM hybrid energy system considering TNPC, LPSP, and LCOE concepts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.1668880
  • Tabak, Abdülsamed, Özkaymak, M., Tahir, M., & Oktay, H. (2017). Optimization and Evaluation of Hybrid PV/WT/BM System in Different Initial Costs and LPSP Conditions. International Journal of Advanced Computer Science and Applications, 8(11), 123–131. https://doi.org/10.14569/ijacsa.2017.081116
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Makaleler
Yazarlar

Abdülsamed Tabak 0000-0001-8832-6408

Yayımlanma Tarihi 18 Ocak 2021
Gönderilme Tarihi 15 Eylül 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 13 Sayı: 1

Kaynak Göster

APA Tabak, A. (2021). Konya İlinde Bir Fabrikanın Enerji Talebinin Karşılanması için Hibrit Enerji Üretim Sisteminin Analiz ve Tasarımı. International Journal of Engineering Research and Development, 13(1), 220-230. https://doi.org/10.29137/umagd.794898
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.