Yıl 2021, Cilt 13 , Sayı 1, Sayfalar 250 - 264 2021-01-18

Siyanür ile cevherden altın üretiminin çevresel etkileri
Environmental effects of cyanide gold production from ore

Feray KOÇAN [1]


Bu makale, cevherden altın üretiminde, pek çok probleme sebep olan siyanürizasyon atıklarının çevresel etkileri ve atık havuzlarındaki siyanür atıklarının arıtılması için uygulanan kimyasal INCO SO2/Hava prosesi incelenmiştir. Cevherden altın üretiminde son yıllarda yaygın olarak kullanılan siyanür liç prosesi ve çevresel etkileri incelenmiştir. Oda sıcaklığındaki asit ve baz çözeltilerinde altın cevherinin çözünmemesine rağmen oda sıcaklığındaki sulu siyanür çözeltisinde altın cevherinin çok yüksek verim ile çözünmektedir. Ancak, sulu siyanür çözeltisi çevreye çok zararlıdır. Bu nedenle, hem siyanür liç çözeltisi ve hem de siyanür liç proses atıkları çevreye direk verilmemelidir. Siyanür çözeltisi ve siyanür proses atıkları için bir arıtma tesisi kurulmalıdır. INCO Prosesi kullanılarak siyanür atıklarındaki toplam siyanür derişimi 1 ppm altına düşürülebilir. Günümüzde siyanür atıklarının arıtılması için tercih edilen en yaygın yöntem kimyasal INCO SO2/Hava prosesidir. INCO Prosesi kullanılarak, atıklardaki toplam siyanür derişimi 1 ppm’in altına düşürülürken, toksik siyanürler amonyum ve karbonat gibi zararsız formlara dönüştürülmektedir.
This article investigates the chemical INCO SO2/Air process applied for the production of gold from ore, for the environmental impacts of cyanidation wastes causing many problems and for the treatment of cyanide wastes in waste pools. The cyanide leaching process and its environmental effects, which have been widely used in gold production from ore in recent years, have been investigated. Although gold ore is not dissolved in acid and base solutions at room temperature, it is dissolved with very high efficiency of gold ore in aqueous cyanide solution at room temperature. However, the aqueous cyanide solution is very harmful to the environment. Therefore, both cyanide leaching solution and cyanide leaching process waste should not be released directly to the environment. A treatment plant should be established for cyanide solution and cyanide process waste. In this treatment plant, the total cyanide concentration can be reduced to a maximum of 1 ppm. Today, the most common method of treatment for cyanide wastes is the chemical INCO SO2/Air process. Using the INCO Process, the total cyanide concentration in waste is reduced to less than 1 ppm, while toxic cyanides are converted into harmless forms such as ammonium and carbonate.
  • Akcil, A., Karahan, A.G., Ciftci, H., Sagdic, O. (2003). Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.), Minerals Engineering, vol. 16, pp. 643–64.
  • Akcil, A. (2003). Turkish gold mining and monitoring in Ovacik gold-silver mine. Tailings and Mine Waste’03, 2003c, pp. 37-40, Colorado, USA.
  • Akcil, A. (2002). Cyanide control in tailings pond: Ovacik gold mine, Turkey, 7th International Symposium on Environmental Issues and Waste management in Energy and Mineral Production, Italy.
  • Altıntepe, M. (2003). Altının Farklı Liç Çözeltilerinde Çözünme Davranışı, Yüksek Lisans Tezi, İTÜ, İstanbul.
  • Baş, A.D. Yazıcı, E.Y. Celep, O. (2013). Altın Metalurjisinde Yeni Gelişmeler. Madencilik, Cilt 52, Sayı 1, Sayfa 3-17, Ankara.
  • Breuer, P.L., Hewitt D.M. (2020). INCO Cyanide destruction insights from plant reviews and laboratory evaluations, Mineral Processing and Extractive Metallurgy, vol. 129 (1), pp. 104-113.
  • Breuer, P.L., Jeffery, C., Meakin, R. (2011). Fundamental investigations of the SO2/air, peroxide and Caro’s acid cyanide destruction processes. In: ALTA 2011 conference proceedings. ALTA: Perth.
  • Çelik, H., Mordoğan, H., İpekoğlu, Ü. (1997). Siyanürlü Altın Üretim Tesisi Atıklarını Arıtma Yöntemleri, Madencilik, cilt 36, Ankara.
  • Donald, G.B. (2009). Cyanogenic foods (cassava fruit kernels and cycadseeds), Medical Toxicology of Natural Substances, Vol. 55, 336–352.
  • Eisler, R., Wiemeyer, S.N. (2019). Altın Madenciliğinde Siyanür Kullanımının Bitkilere Ve Hayvanlara Zararları Ve Buna Bağlı Su Sorunları, Çeviri, Ekoloji Kolektifi Derneği, Ankara.
  • Gupta, C.K., Mukherjee, T.K., (1990). Hydrometallurgy in Extraction Processes, Volume 2, CRC press, USA. Johnson, C.A. (2015). The fate of cyanide in leach wastes at gold mines: An environmental perspective, Applied Geochemistry vol. 57, pp. 194-205.
  • Heinen, H.J., Peterson, D.G. ve Lindstrom, R.E. (1978). Processing gold ores using heap leach – carbon adsorpion methods, U.S. Breau of Mines, USA.
  • Hewitt, D., Breuer, P., Jeffery, C. (2012). Cyanide detoxification of gold cyanidation tails and process streams, Mineral Processing and Extractive Metallurgy, Transactions of the Institutions of Mining And Metallurgy-C, Vol. 121, No. 4.
  • Hiçdönmez, Ş. (1997). Altın üretiminde siyanürleme ve çevre sorunları, Çevre ve Mühendis Dergisi, Sayı 13. Ankara.
  • İpekoğlu, Ü., Mordoğan, H. (1993). Altın Üretim Tesislerindeki Siyanürün Türleri, Toksik Etkileri ve Atık Barajındaki Davranışı ‘’The Forms, Toxicity and Behaviour of Cyanide in Gold Cyanidation and Tailing Dams’’, Madencilik, Cilt 32 Sayı 1. Ankara.
  • Jaszczak, E., Polkowska, Z., Narkowicz, S., Namiesnik, J. (2017). Cyanides in the environment-analysis-problems and challenges. Environmental Science and Pollution Research International, vol. 24, pp. 15929–15948.
  • Karlsson, H.L., Botz, M. (2004). Ammonia nitrous oxide and hydrogen cyanide emissions from five passenger vehicles. Science of the Total Environment, Vol. 334-335, pp. 125–132.
  • Koksal, E., Ormanoglu, G., Devuyst, E.A. (2003). Cyanide destruction: full-scale operation at Ovacık gold mine, The European Journal of Mineral Processing and Environmental Protection, Vol. 3, No. 3, 1303-0868, pp. 270-280.
  • Kuyucak, N. (2001). Acid Mine Drainage (AMD) – Treatment options for mining effluents. Mining Environment Management.
  • Kuyucak, N., Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes, Minerals Engineering 50–51, pp. 13–29.
  • Logsdon, M.J., Hagelstein, K., Mudder, T. (1999). The management of cyanide in gold extraction. International Council on Metals and the Environment.
  • Marsden J.O., House, C.I. (2006). The Chemistry of Gold Extraction, Society of Mining Metallurgy, and Exploration, Inc (SME), Colorado, USA.
  • Mitchell, CJ., Evans, EJ., Styles, MT., (1997). A review of gold particle size and recovery methods, British Geological Survey, Nottingham.
  • Maimekov, Z.K., Sambaeva, D.A., Kemelov, K.A., Moldobaev, M.B., Izakov, J.B., (2014). Destruction of Sodium Cyanide and Determination of Hydrogen Index of the Industrial Waste Water, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 19 (1-2), pp. 25-29.
  • Mpinga, C.N. (2012). The extraction of precious metals from an alkaline cyanided medium by granular activated carbon, MSc thesis, University of Stellenbosch, South Africa.
  • Nelson, M.G., Kroegef, E.B., Arps, P.J. (1998). Chemical and Biological Destruction of Cyanide: Comparative Costs in a Cold Climate, Mineral Processing and Extractive metallurgy Review, vol. 19, pp. 217-226.
  • Oleson, J.L. (2003). Investigation and development of a mathematical model for the oxidation of cyanide in the INCO SO2/O2 Process, Master of Science Thesis, University of Alaska Faitbanks, USA.
  • Öztürk, M. (2018). Endüstriyel Atıksuda Siyanür ve Krom (6) Giderimi. Çevre Ve Şehircilik Bakanlığı, Ankara.
  • Özsoy, Y. (2015). Refrakter Altın Cevherlerinin Tanımlayıcı Liç Tekniği İle Biyooksidasyona Uygunluğunun Araştırılması. Yüksek Lisans Tezi, İTÜ, İstanbul.
  • Sarıkaya, S. (2018). Bir Altın Cevherinde Başlıca İşlem Parametrelerinin Liç Verimine Etkilerinin İncelenmesi Yüksek Lisans Tezi, Hacettepe üniversitesi, Ankara.
  • Sayıner, B. (2012). Siyanür Liçinde Altının Aktif Karbona Adsorpsiyonunda Çeşitli Metallerin Etkisinin Araştırılması, Doktora Tezi, İTÜ, İstanbul.
  • U.S. EPA (1994). Treatment of Cyanide Heap Leaches and Tailings. (1994). U. S. Environmental Protection Agency, Office of Solid Waste, Washington DC.
  • U.S. Geological Survey (2020). Mineral commodity summaries 2020. U.S. Geological Survey, 200 p., https://doi. org/10.3133/mcs2020. Energy Ministry. (2020). http://www.enerji.gov.tr/tr-TR/Sayfalar/Altin.
  • Ünal, İ.H., Tuncel, S., Yoleri, B., Arslan, M. (2016). Türkiye’de ve Dünya’da Altın, Maden Tetkik ve Arama Genel Müdürlüğü, Fizibilite Etütleri Dairesi Başkanlığı, Ankara.
  • Yarar, B. (2001). Cyanides in the Environment and Their Long-Term Fate, Proceedings of 17th International Mining Congress and Exhibition of Turkey, IMCET 2001, pp. 85-93.
  • Yılmaz, E. Yazıcı, E.Y. Celep, O. Deveci, H. (2019). Liç Atıklarından Siyanürün Geri Kazanımı Yöntemleri. Madencilik 58(1), 53-71, 2019.
  • Zaranyika, M.F., Mudungwe L., Gurira, R.C. (1994). Cyanide ion concentration in the effluent from two gold mines in Zimbabwe and in a stream receiving effluent from one of the goldmines, Journal of Environmental Science and Health A, vol. 29, pp. 1295-1303.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0003-4013-8576
Yazar: Feray KOÇAN (Sorumlu Yazar)
Kurum: MANİSA CELÂL BAYAR ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 18 Ocak 2021

APA Koçan, F . (2021). Siyanür ile cevherden altın üretiminin çevresel etkileri . International Journal of Engineering Research and Development , 13 (1) , 250-264 . DOI: 10.29137/umagd.811352