Bu çalışmada, cam endüstrisinin bir ön-atığı olan cam atık çamurunun (CAÇ), killi bir zeminin (KZ) mukavemet ve konsolidasyon parametrelerine etkileri incelenmiştir. Son yıllarda, sürdürülebilirlik ve çevre koruma konularında gittikçe gelişen hassasiyet, bu tür atıkların zemin iyileştirme uygulamalarında kullanılmalarını gündeme getirmiştir. CAÇ, cam üretebilmek için gerekli olan mineralojik kısım, ilgili madenden ayrıştırıldıktan sonra ortaya çıkmakta ve sürekli doğada birikmektedir. Bu atığın kullanımı ile gerçekleştirilmiş zemin iyileştirme çalışmaları, ilgili literatürde henüz bulunmamaktadır. Çalışmada, kil-cam atığı karışımlarının en ideal su muhtevası, karışım oranları, mukavemet, oturma ve şişme değişimleri gibi parametreleri irdelenmiştir. Mikro-yapı analizleri gerçekleştirilerek, söz konusu zeminin iç yapısı ve iç-yapı değişimleri gözlemlenmiş ve sonuçta killerin cam atığı ile güçlendirilebileceği, çevre-dostu bir yaklaşımla vurgulanmıştır.
Abbaspour M., Aflaki E., Nejad F. M., (2019). Reuse of waste tire textile fibers as soil reinforcement. Journal of cleaner production, 207, 1059-1071.
Arulrajah A., Mohammadjavad Y., Mahdi M. D, Suksun H., Myint W. B., and Melvyn L., (2018). Evaluation of fly ash and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 58 (6), 1358-70. https://doi.org/10.1016/j.sandf.2018.07.005.
Ateş, A., (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering 96, 295-304. https://doi.org/10.1016/j.compositesb.2016.04.049.
Ayininuola G., Ayodeji I., (2016. Influence of Sludge Ash on Soil Shear Strength. Journal of Civil Engineering Research, 6(3), 72-77.
Ayodele A. L., Adebisi, A. O., Kareem M. A., (2016). Use of Sludge Ash in Stabilising Two Tropical Laterite. Int. J. Sci. Eng. Res., 7.
Basha E. A., Hashim R., Mahmud H. B., Muntohar, A. S., (2005). Stabilization of residual soil with rice husk ash and cement. Constr. Build. Mater., 19(6), 448-453.
Bell F. G., (1996. Lime stabilization of clay minerals and soils. Engineering geology, 42 (4), 223-37.
Bilondi M. P, Mohammad M. T. and Vahid T., (2018). Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils. Construction and Building Materials, 170, 302-13. https://doi.org/10.1016/j.conbuildmat.2018.03.049.
Biradar K. B., Arun K. U. and Satyanarayana P. V. V., (2014). Influence of steel slag and fly ash on strength properties of clayey soil: A comparative study. International Journal of Engineering Trends and Technology (IJETT)- (14) (2). https://doi.org/10.14445/22315381/IJETT-V14P213.
Brooks, R. M., (2019). Soil stabilization with fly ash and corn waste ash–improvements in engineering characteristics. Int. J. Appl. Eng. Res., 14 (4), 1025-1030.
Chang I., Jooyoung I., Moon-Kyung C., Gye-Chun C., (2018). Bovine casein as a new soil strengthening binder from diary wastes. Construction and Building Materials, 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.
Cokca E., Yazici V., Ozaydin K., (2009). Stabilization of expansive clays using granulated blast furnace slag (GBFS) and GBFS-cement. Geotech. Geol. Eng., 27 (4), 489.
Corrêa-Silva M., Nuno A., Nuno C., Tiago M., António T. G. and Coelho J., (2018). Improvement of a clayey soil with alkali activated low-calcium fly ash for transport infrastructures applications. Road Materials and Pavement Design: 1-15. https://doi.org/10.1080/14680629.2018.1473286.
de Figueiredo Lopes Lucena L. C., ThoméJuca J. F., Soares J. B., Portela M. G., (2014). Potential uses of sewage sludge in highway construction. Journal of materials in civil engineering, 26 (9), 04014051.
Esmaeilpour S. N., Abbasali T. G., Mohammadreza K. T. and Asskar J. C., (2019). Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transportation Geotechnics, 19, 1-8. https://doi.org/10.1016/j.trgeo.2019.01.004.
Fauzi A., Zuraidah D. and Usama J. F., (2016). Soil engineering properties improvement by utilization of cut waste plastic and crushed waste glass as additive. International Journal of Engineering and Technology, 8 (1), 15. https://doi.org/10.7763/IJET.2016.V8.851.
Gupta C., Sharma R. K., (2014). Influence of marble dust, fly ash and beach sand on sub-grade characteristics of expansive soils. International Conference on Advances in Engineering and Technology, 13-18.
Güllü H., (2014). Factorial experimental approach for effective dosage rate of stabilizer: Application for fine-grained soil treated with bottom ash. Soils and Foundations, 54(3), 462-477.
Hasan H., Dang L, Khabbaz H, Fatahi B., Terzaghi S., (2016). Remediation of expansive soils using agricultural waste bagasse ash. Procedia Eng., 143, 1368-1375.
James, J., Pandian, P. K., (2016. Industrial wastes as auxiliary additives to cement/lime stabilization of soils. Adv. Civ. Eng., 1-17.
Jin L. M., MohdYunus, N. Z, Hezmi M. A., Rashid A. S. A., Marto A., Kalatehjari R., Pakir F., Mashros N. and Ganiyu A., (2018). Predicting the Effective Depth of Soil Stabilization for Marine Clay Treated by Biomass Silica. KSCE Journal of Civil Engineering, KSCE, 22 (11), 4316-4326. https://doi.org/10.1007/s12205-018-1294-x.
Keerthi Y., Divya Kanthi P., Tejaswi N., Shyam Chamberlin K., Satyanarayana B., (2013). Stabilization of clayey soil using cement kiln waste. Int. J. Adv. Struct. Geotech. Eng., 2 (2), 77-81.
Kianimehr M., Piltan T. S., Seyed M. B., Alireza M. and Arul A., (2019). Utilization of recycled concrete aggregates for light-stabilization of clay soils. Construction and Building Materials, 227, 116792.
Kumar A. and Gupta D., (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotextiles and Geomembranes, 44 (3), 466-74. https://doi.org/10.1016/j.jrmge.2016.05.010.
Kumar A. and Sivapullaiah P. V., (2012). Improvement of strength of expansive soil with waste granulated blast furnace slag. In Geo Congress 2012: State of the Art and Practice in Geotechnical Engineering, 3920 (8). https://doi.org/10.14445/22315381/IJETT-V11P254.
MohdYunus N. Z., Wanatowski D., Abdul Hassan N., and Marto A., (2016). Shear strength and compressibility behavior of lime treated organic clay. KSCE Journal of Civil Engineering, KSCE, 20 (5), 1721-1727. https://doi.org/10.1007/s12205-018-1294-x.
Lin D. F., Lin K. L., Luo H. L., (2007). A comparison between sludge ash and fly ash on the improvement in soft soil. J. Air Waste Manage, 57 (1), 59-64.
Liu Y., Chang C. W., Namdar A., She Y., Lin C. H., Yuan X., Yang Q., (2019). Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Construction and Building Materials, 221, 1-11.
Long G., Li L., Li W., Ma K., Dong W., Bai C., Zhou J. L., (2019). Enhanced mechanical properties and durability of coal gangue reinforced cement-soil mixture for foundation treatments. Journal of cleaner production, 231, 468-482.
Pourakbar S., Afshin A., Bujang B. K. H. and Mohammad H. F., (2015). Stabilization of clayey soil using ultra fine palm oil fuel ash (POFA) and cement. Transportation Geotechnics, 3, 24-35. https://doi.org/10.1016/j.trgeo.2015.01.002.
Ramakrishna A. N, Pradeepkumar A. V., (2006). Stabilization of black cotton soil using rice husk ash and cement. In National Conference on Civil Engineering Meeting the Challenges of Tomorrow, GND Engineering College, Ludhiana, 215-220.
Shah S. A. R., Mahmood Z., Nisar A., Aamir M., Farid A., Waseem M., (2020). Compaction performance analysis of alum sludge waste modified soil. Construction and Building Materials, 230, 116953.
Sharma R. S., Phanikumar B. R., Rao B. V., (2008). Engineering behavior of a remolded expansive clay blended with lime, calcium chloride and rice- husk ash. Jnl. of Mat. in Civil Eng, 20(8), 509-515.
Taki K., Choudhary S., Gupta S., Kumar M., (2020). Enhancement of geotechnical properties of municipal sewage sludge for sustainable utilization as engineering construction material. Journal of Cleaner Production, 251, 119-723.
Tremblay H., Josée D., Jacques L. and Serge L., (2002). Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal, 39 (3), 535-46.
TS 1900-1, (2006): İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 1: Fiziksel Özelliklerin Tayini. Türk Standartları Enstitüsü. Ankara.
TS 1900-2, (2006): İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standartları Enstitüsü. Ankara.
Ural N., Karakurt C. and Cömert A. T., (2014). Influence of marble wastes on soil improvement and concrete production. J Mater Cycles Waste Manag, 16, 500–508. https://doi.org/10.1007/s10163-013-0200-3.
Yadav J. S., Hussain S., Tiwari S. K., Garg A., (2019). Assessment of the load–deformation behavior of rubber fibre–reinforced cemented clayey soil. Transportation Infrastructure Geotechnology, 6(2), 105-136.
Zhan T. L., Zhan X., Lin W., Luo X., Chen Y., (2014). Field and laboratory investigation on geotechnical properties of sewage sludge disposed in a pit at Changan landfill, Chengdu, China. Engineering geology, 170, 24-32.
Year 2021,
Volume: 13 Issue: 2, 612 - 624, 18.06.2021
Abbaspour M., Aflaki E., Nejad F. M., (2019). Reuse of waste tire textile fibers as soil reinforcement. Journal of cleaner production, 207, 1059-1071.
Arulrajah A., Mohammadjavad Y., Mahdi M. D, Suksun H., Myint W. B., and Melvyn L., (2018). Evaluation of fly ash and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing. Soils and Foundations, 58 (6), 1358-70. https://doi.org/10.1016/j.sandf.2018.07.005.
Ateş, A., (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering 96, 295-304. https://doi.org/10.1016/j.compositesb.2016.04.049.
Ayininuola G., Ayodeji I., (2016. Influence of Sludge Ash on Soil Shear Strength. Journal of Civil Engineering Research, 6(3), 72-77.
Ayodele A. L., Adebisi, A. O., Kareem M. A., (2016). Use of Sludge Ash in Stabilising Two Tropical Laterite. Int. J. Sci. Eng. Res., 7.
Basha E. A., Hashim R., Mahmud H. B., Muntohar, A. S., (2005). Stabilization of residual soil with rice husk ash and cement. Constr. Build. Mater., 19(6), 448-453.
Bell F. G., (1996. Lime stabilization of clay minerals and soils. Engineering geology, 42 (4), 223-37.
Bilondi M. P, Mohammad M. T. and Vahid T., (2018). Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils. Construction and Building Materials, 170, 302-13. https://doi.org/10.1016/j.conbuildmat.2018.03.049.
Biradar K. B., Arun K. U. and Satyanarayana P. V. V., (2014). Influence of steel slag and fly ash on strength properties of clayey soil: A comparative study. International Journal of Engineering Trends and Technology (IJETT)- (14) (2). https://doi.org/10.14445/22315381/IJETT-V14P213.
Brooks, R. M., (2019). Soil stabilization with fly ash and corn waste ash–improvements in engineering characteristics. Int. J. Appl. Eng. Res., 14 (4), 1025-1030.
Chang I., Jooyoung I., Moon-Kyung C., Gye-Chun C., (2018). Bovine casein as a new soil strengthening binder from diary wastes. Construction and Building Materials, 160, 1-9. https://doi.org/10.1016/j.conbuildmat.2017.11.009.
Cokca E., Yazici V., Ozaydin K., (2009). Stabilization of expansive clays using granulated blast furnace slag (GBFS) and GBFS-cement. Geotech. Geol. Eng., 27 (4), 489.
Corrêa-Silva M., Nuno A., Nuno C., Tiago M., António T. G. and Coelho J., (2018). Improvement of a clayey soil with alkali activated low-calcium fly ash for transport infrastructures applications. Road Materials and Pavement Design: 1-15. https://doi.org/10.1080/14680629.2018.1473286.
de Figueiredo Lopes Lucena L. C., ThoméJuca J. F., Soares J. B., Portela M. G., (2014). Potential uses of sewage sludge in highway construction. Journal of materials in civil engineering, 26 (9), 04014051.
Esmaeilpour S. N., Abbasali T. G., Mohammadreza K. T. and Asskar J. C., (2019). Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transportation Geotechnics, 19, 1-8. https://doi.org/10.1016/j.trgeo.2019.01.004.
Fauzi A., Zuraidah D. and Usama J. F., (2016). Soil engineering properties improvement by utilization of cut waste plastic and crushed waste glass as additive. International Journal of Engineering and Technology, 8 (1), 15. https://doi.org/10.7763/IJET.2016.V8.851.
Gupta C., Sharma R. K., (2014). Influence of marble dust, fly ash and beach sand on sub-grade characteristics of expansive soils. International Conference on Advances in Engineering and Technology, 13-18.
Güllü H., (2014). Factorial experimental approach for effective dosage rate of stabilizer: Application for fine-grained soil treated with bottom ash. Soils and Foundations, 54(3), 462-477.
Hasan H., Dang L, Khabbaz H, Fatahi B., Terzaghi S., (2016). Remediation of expansive soils using agricultural waste bagasse ash. Procedia Eng., 143, 1368-1375.
James, J., Pandian, P. K., (2016. Industrial wastes as auxiliary additives to cement/lime stabilization of soils. Adv. Civ. Eng., 1-17.
Jin L. M., MohdYunus, N. Z, Hezmi M. A., Rashid A. S. A., Marto A., Kalatehjari R., Pakir F., Mashros N. and Ganiyu A., (2018). Predicting the Effective Depth of Soil Stabilization for Marine Clay Treated by Biomass Silica. KSCE Journal of Civil Engineering, KSCE, 22 (11), 4316-4326. https://doi.org/10.1007/s12205-018-1294-x.
Keerthi Y., Divya Kanthi P., Tejaswi N., Shyam Chamberlin K., Satyanarayana B., (2013). Stabilization of clayey soil using cement kiln waste. Int. J. Adv. Struct. Geotech. Eng., 2 (2), 77-81.
Kianimehr M., Piltan T. S., Seyed M. B., Alireza M. and Arul A., (2019). Utilization of recycled concrete aggregates for light-stabilization of clay soils. Construction and Building Materials, 227, 116792.
Kumar A. and Gupta D., (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash–soil mixtures. Geotextiles and Geomembranes, 44 (3), 466-74. https://doi.org/10.1016/j.jrmge.2016.05.010.
Kumar A. and Sivapullaiah P. V., (2012). Improvement of strength of expansive soil with waste granulated blast furnace slag. In Geo Congress 2012: State of the Art and Practice in Geotechnical Engineering, 3920 (8). https://doi.org/10.14445/22315381/IJETT-V11P254.
MohdYunus N. Z., Wanatowski D., Abdul Hassan N., and Marto A., (2016). Shear strength and compressibility behavior of lime treated organic clay. KSCE Journal of Civil Engineering, KSCE, 20 (5), 1721-1727. https://doi.org/10.1007/s12205-018-1294-x.
Lin D. F., Lin K. L., Luo H. L., (2007). A comparison between sludge ash and fly ash on the improvement in soft soil. J. Air Waste Manage, 57 (1), 59-64.
Liu Y., Chang C. W., Namdar A., She Y., Lin C. H., Yuan X., Yang Q., (2019). Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Construction and Building Materials, 221, 1-11.
Long G., Li L., Li W., Ma K., Dong W., Bai C., Zhou J. L., (2019). Enhanced mechanical properties and durability of coal gangue reinforced cement-soil mixture for foundation treatments. Journal of cleaner production, 231, 468-482.
Pourakbar S., Afshin A., Bujang B. K. H. and Mohammad H. F., (2015). Stabilization of clayey soil using ultra fine palm oil fuel ash (POFA) and cement. Transportation Geotechnics, 3, 24-35. https://doi.org/10.1016/j.trgeo.2015.01.002.
Ramakrishna A. N, Pradeepkumar A. V., (2006). Stabilization of black cotton soil using rice husk ash and cement. In National Conference on Civil Engineering Meeting the Challenges of Tomorrow, GND Engineering College, Ludhiana, 215-220.
Shah S. A. R., Mahmood Z., Nisar A., Aamir M., Farid A., Waseem M., (2020). Compaction performance analysis of alum sludge waste modified soil. Construction and Building Materials, 230, 116953.
Sharma R. S., Phanikumar B. R., Rao B. V., (2008). Engineering behavior of a remolded expansive clay blended with lime, calcium chloride and rice- husk ash. Jnl. of Mat. in Civil Eng, 20(8), 509-515.
Taki K., Choudhary S., Gupta S., Kumar M., (2020). Enhancement of geotechnical properties of municipal sewage sludge for sustainable utilization as engineering construction material. Journal of Cleaner Production, 251, 119-723.
Tremblay H., Josée D., Jacques L. and Serge L., (2002). Influence of the nature of organic compounds on fine soil stabilization with cement. Canadian Geotechnical Journal, 39 (3), 535-46.
TS 1900-1, (2006): İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 1: Fiziksel Özelliklerin Tayini. Türk Standartları Enstitüsü. Ankara.
TS 1900-2, (2006): İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standartları Enstitüsü. Ankara.
Ural N., Karakurt C. and Cömert A. T., (2014). Influence of marble wastes on soil improvement and concrete production. J Mater Cycles Waste Manag, 16, 500–508. https://doi.org/10.1007/s10163-013-0200-3.
Yadav J. S., Hussain S., Tiwari S. K., Garg A., (2019). Assessment of the load–deformation behavior of rubber fibre–reinforced cemented clayey soil. Transportation Infrastructure Geotechnology, 6(2), 105-136.
Zhan T. L., Zhan X., Lin W., Luo X., Chen Y., (2014). Field and laboratory investigation on geotechnical properties of sewage sludge disposed in a pit at Changan landfill, Chengdu, China. Engineering geology, 170, 24-32.
Mahmutluoğlu, B., & Bağrıaçık, B. (2021). Cam Atık Çamuru ile Güçlendirilmiş Kilin Mukavemet, Oturma ve Şişme Davranışlarının İncelenmesi: Çevre Dostu Bir Zemin İyileştirme Yaklaşımı. International Journal of Engineering Research and Development, 13(2), 612-624. https://doi.org/10.29137/umagd.771453