Research Article
BibTex RIS Cite

Termokromik Pigment İçeren Kaplamalarda İşlem Sıcaklık Etkisi

Year 2021, Volume: 13 Issue: 2, 462 - 477, 18.06.2021
https://doi.org/10.29137/umagd.874818

Abstract

Bu çalışmada, kaplama yapmak için ticari olarak temin edilebilen ve 33°C’nin üzerinde yeşilden beyaza, 45°C’nin üzerinde siyahtan beyaza ve 65°C’nin üzerinde maviden beyaza renk değiştiren termokromik pigmentler kullanılmıştır. Farklı sıcaklıklarda ısıl işlem süreci uygulanan kaplamalarda bağlayıcı olarak polivinilpirolidon kullanılmıştır. Hazırlanan kaplamaların renk, faz, mikro yapı analizleri ve kızılötesi termometre ile renk değişim sıcaklıkları karakterize edilmiştir. Yapılan çalışmalar sonucunda günlük hayatta yaşanılan ve yaşam konforunu değiştirmeden olası sıcaklık değişimlerinin ve risklerin bu yöntem ile tespit edilebileceği ortaya konulmuştur.

Supporting Institution

Eskişehir Teknik Üniversitesi

Project Number

1604F166

Thanks

Yazarlar çalışmada finansal desteğinden dolayı Eskişehir Teknik Üniversitesi Bilimsel Araştırma Proje Birimi'ne teşekkür etmektedir.

References

  • Aklujkar, P. S., & Kandasubramanian, B. (2020). A review of microencapsulated thermochromic coatings for sustainable building applications. Journal of Coatings Technology and Research, 1-19. doi.org/10.1007/s11998-020-00396-3
  • Berardi, U., Garai, M., & Morselli, T. (2020). Preparation and assessment of the potential energy savings of thermochromic and cool coatings considering inter-building effects. Solar Energy, 209, 493-504. doi.org/10.1016/j.solener.2020.09.015
  • Calovi, M., Russo, F., & Rossi, S. (2021). Synergic behavior of graphene-based filler and thermochromic pigments in cataphoretic coatings. Progress in Organic Coatings, 150, 105978. doi.org/10.1016/j.porgcoat.2020.105978
  • Chen, Y.-Y., & Wei, W.-C. J. (2001). Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive. Journal of the European Ceramic Society, 21(14), 2535-2540. doi.org/10.1016/S0955-2219(01)00277-1
  • Cheng, Y., Zhang, X., Fang, C., Chen, J., & Wang, Z. (2018). Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: A review. Journal of Materials Science & Technology, 34(12), 2225-2234. doi.org/10.1016/j.jmst.2018.05.016
  • Ferrara, M., & Bengisu, M. (2014). Materials that change color Materials that Change Color (pp. 9-60): Springer. doi.org/10.1007/978-3-319-00290-3_2
  • Garshasbi, S., & Santamouris, M. (2019). Using advanced thermochromic technologies in the built environment: Recent development and potential to decrease the energy consumption and fight urban overheating. Solar Energy Materials and Solar Cells, 191, 21-32. doi.org/10.1016/j.solmat.2018.10.023
  • Hu, J., & Yu, X. B. (2019). Adaptive thermochromic roof system: Assessment of performance under different climates. Energy and Buildings, 192, 1-14. doi.org/10.1016/j.enbuild.2019.02.040
  • Hu, J., & Yu, X. B. (2020). Adaptive building roof by coupling thermochromic material and phase change material: Energy performance under different climate conditions. Construction and Building Materials, 262, 120481. doi.org/10.1016/j.conbuildmat.2020.120481
  • Karlessi, T., & Santamouris, M. (2015). Improving the performance of thermochromic coatings with the use of UV and optical filters tested under accelerated aging conditions. International Journal of Low-Carbon Technologies, 10(1), 45-61. doi.org/10.1093/ijlct/ctt027
  • Karlessi, T., Santamouris, M., Apostolakis, K., Synnefa, A., & Livada, I. (2009). Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy, 83(4), 538-551. doi.org/10.1016/j.solener.2008.10.005
  • Kuźmińska, A., Butruk-Raszeja, B. A., Stefanowska, A., & Ciach, T. (2020). Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids and Surfaces B: Biointerfaces, 192, 111066. doi.org/10.1016/j.colsurfb.2020.111066
  • Pedaballi, S., Li, C.-C., & Song, Y.-J. (2019). Dispersion of microcapsules for the improved thermochromic performance of smart coatings. RSC advances, 9(42), 24175-24183. DOI: 10.1039/c9ra04740a
  • Pérez, G., Allegro, V. R., Corroto, M., Pons, A., & Guerrero, A. (2018). Smart reversible thermochromic mortar for improvement of energy efficiency in buildings. Construction and Building Materials, 186, 884-891. doi.org/10.1016/j.conbuildmat.2018.07.246
  • Pérez, G., Mota-Heredia, C., Sánchez-García, J., & Guerrero, A. (2020). Compatibility between thermochromic pigments and Portland cement-based materials. Construction and Building Materials, 251, 119038. doi.org/10.1016/j.conbuildmat.2020.119038
  • Rajadurai, R. S., Lee, J.-H., Choi, E., & Kang, J.-W. (2020). MnNH4P2O7-Based Coating for High Temperature Assessment on the Surfaces of Cement Composites. Coatings, 10(4), 396. doi.org/10.3390/coatings10040396
  • Rossi, S., Simeoni, M., & Quaranta, A. (2021). Behavior of chromogenic pigments and influence of binder in organic smart coatings. Dyes and Pigments, 184, 108879. doi.org/10.1016/j.dyepig.2020.108879
  • Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085-3102. doi.org/10.1016/j.solener.2010.12.023
  • Štaffová, M., Kučera, F., Tocháček, J., Dzik, P., Ondreáš, F., & Jančář, J. (2021). Insight into color change of reversible thermochromic systems and their incorporation into textile coating. Journal of Applied Polymer Science, 138(4), 49724. doi.org/10.1002/app.49724
  • Yan, X., Chang, Y., & Qian, X. (2019). Effect of the concentration of pigment slurry on the film performances of waterborne wood coatings. Coatings, 9(10), 635. doi.org/10.3390/coatings9100635
  • Yan, X., Wang, L., & Qian, X. (2020). Effect of coating process on performance of reversible thermochromic waterborne coatings for Chinese fir. Coatings, 10(3), 223. doi.org/10.3390/coatings10030223
  • Yuxuan, Z., Yunyun, Z., Jianrong, Y., & Xiaoqiang, Z. (2020). Energy saving performance of thermochromic coatings with different colors for buildings. Energy and Buildings, 215, 109920. doi.org/10.1016/j.enbuild.2020.109920
  • Zhang, H., Chen, Z., Li, L., & Zhu, C. (2017). Evaluation of aging behaviors of asphalt with different thermochromic powders. Construction and Building Materials, 155, 1198-1205. doi.org/10.1016/j.conbuildmat.2017.08.161
  • Zhang, Y., & Zhai, X. (2019). Preparation and testing of thermochromic coatings for buildings. Solar Energy, 191, 540-548. doi.org/10.1016/j.solener.2019.09.042

Temperature Effect in Thermochromic Pigment Containing Coatings

Year 2021, Volume: 13 Issue: 2, 462 - 477, 18.06.2021
https://doi.org/10.29137/umagd.874818

Abstract

In this study, commercially available thermochromic pigments that change colour from green to white above 33°C, black to white above 45°C, and blue to white above 65°C were used to make coatings. Polyvinylpyrrolidone is used as a binder in coatings where heat treatment processes are applied at different temperatures. Color, phase, microstructure analysis and colour change temperatures of the prepared coatings were characterized by infrared thermometer. As a result of the studies, it has been revealed that possible temperature changes and risks experienced in daily life without changing the comfort of life can be detected by this method.

Project Number

1604F166

References

  • Aklujkar, P. S., & Kandasubramanian, B. (2020). A review of microencapsulated thermochromic coatings for sustainable building applications. Journal of Coatings Technology and Research, 1-19. doi.org/10.1007/s11998-020-00396-3
  • Berardi, U., Garai, M., & Morselli, T. (2020). Preparation and assessment of the potential energy savings of thermochromic and cool coatings considering inter-building effects. Solar Energy, 209, 493-504. doi.org/10.1016/j.solener.2020.09.015
  • Calovi, M., Russo, F., & Rossi, S. (2021). Synergic behavior of graphene-based filler and thermochromic pigments in cataphoretic coatings. Progress in Organic Coatings, 150, 105978. doi.org/10.1016/j.porgcoat.2020.105978
  • Chen, Y.-Y., & Wei, W.-C. J. (2001). Formation of mullite thin film via a sol-gel process with polyvinylpyrrolidone additive. Journal of the European Ceramic Society, 21(14), 2535-2540. doi.org/10.1016/S0955-2219(01)00277-1
  • Cheng, Y., Zhang, X., Fang, C., Chen, J., & Wang, Z. (2018). Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: A review. Journal of Materials Science & Technology, 34(12), 2225-2234. doi.org/10.1016/j.jmst.2018.05.016
  • Ferrara, M., & Bengisu, M. (2014). Materials that change color Materials that Change Color (pp. 9-60): Springer. doi.org/10.1007/978-3-319-00290-3_2
  • Garshasbi, S., & Santamouris, M. (2019). Using advanced thermochromic technologies in the built environment: Recent development and potential to decrease the energy consumption and fight urban overheating. Solar Energy Materials and Solar Cells, 191, 21-32. doi.org/10.1016/j.solmat.2018.10.023
  • Hu, J., & Yu, X. B. (2019). Adaptive thermochromic roof system: Assessment of performance under different climates. Energy and Buildings, 192, 1-14. doi.org/10.1016/j.enbuild.2019.02.040
  • Hu, J., & Yu, X. B. (2020). Adaptive building roof by coupling thermochromic material and phase change material: Energy performance under different climate conditions. Construction and Building Materials, 262, 120481. doi.org/10.1016/j.conbuildmat.2020.120481
  • Karlessi, T., & Santamouris, M. (2015). Improving the performance of thermochromic coatings with the use of UV and optical filters tested under accelerated aging conditions. International Journal of Low-Carbon Technologies, 10(1), 45-61. doi.org/10.1093/ijlct/ctt027
  • Karlessi, T., Santamouris, M., Apostolakis, K., Synnefa, A., & Livada, I. (2009). Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy, 83(4), 538-551. doi.org/10.1016/j.solener.2008.10.005
  • Kuźmińska, A., Butruk-Raszeja, B. A., Stefanowska, A., & Ciach, T. (2020). Polyvinylpyrrolidone (PVP) hydrogel coating for cylindrical polyurethane scaffolds. Colloids and Surfaces B: Biointerfaces, 192, 111066. doi.org/10.1016/j.colsurfb.2020.111066
  • Pedaballi, S., Li, C.-C., & Song, Y.-J. (2019). Dispersion of microcapsules for the improved thermochromic performance of smart coatings. RSC advances, 9(42), 24175-24183. DOI: 10.1039/c9ra04740a
  • Pérez, G., Allegro, V. R., Corroto, M., Pons, A., & Guerrero, A. (2018). Smart reversible thermochromic mortar for improvement of energy efficiency in buildings. Construction and Building Materials, 186, 884-891. doi.org/10.1016/j.conbuildmat.2018.07.246
  • Pérez, G., Mota-Heredia, C., Sánchez-García, J., & Guerrero, A. (2020). Compatibility between thermochromic pigments and Portland cement-based materials. Construction and Building Materials, 251, 119038. doi.org/10.1016/j.conbuildmat.2020.119038
  • Rajadurai, R. S., Lee, J.-H., Choi, E., & Kang, J.-W. (2020). MnNH4P2O7-Based Coating for High Temperature Assessment on the Surfaces of Cement Composites. Coatings, 10(4), 396. doi.org/10.3390/coatings10040396
  • Rossi, S., Simeoni, M., & Quaranta, A. (2021). Behavior of chromogenic pigments and influence of binder in organic smart coatings. Dyes and Pigments, 184, 108879. doi.org/10.1016/j.dyepig.2020.108879
  • Santamouris, M., Synnefa, A., & Karlessi, T. (2011). Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Solar Energy, 85(12), 3085-3102. doi.org/10.1016/j.solener.2010.12.023
  • Štaffová, M., Kučera, F., Tocháček, J., Dzik, P., Ondreáš, F., & Jančář, J. (2021). Insight into color change of reversible thermochromic systems and their incorporation into textile coating. Journal of Applied Polymer Science, 138(4), 49724. doi.org/10.1002/app.49724
  • Yan, X., Chang, Y., & Qian, X. (2019). Effect of the concentration of pigment slurry on the film performances of waterborne wood coatings. Coatings, 9(10), 635. doi.org/10.3390/coatings9100635
  • Yan, X., Wang, L., & Qian, X. (2020). Effect of coating process on performance of reversible thermochromic waterborne coatings for Chinese fir. Coatings, 10(3), 223. doi.org/10.3390/coatings10030223
  • Yuxuan, Z., Yunyun, Z., Jianrong, Y., & Xiaoqiang, Z. (2020). Energy saving performance of thermochromic coatings with different colors for buildings. Energy and Buildings, 215, 109920. doi.org/10.1016/j.enbuild.2020.109920
  • Zhang, H., Chen, Z., Li, L., & Zhu, C. (2017). Evaluation of aging behaviors of asphalt with different thermochromic powders. Construction and Building Materials, 155, 1198-1205. doi.org/10.1016/j.conbuildmat.2017.08.161
  • Zhang, Y., & Zhai, X. (2019). Preparation and testing of thermochromic coatings for buildings. Solar Energy, 191, 540-548. doi.org/10.1016/j.solener.2019.09.042
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Lale Civan 0000-0001-6749-7398

Semra Kurama 0000-0002-7554-3419

Erhan Ayas 0000-0003-0592-3990

Project Number 1604F166
Publication Date June 18, 2021
Submission Date February 6, 2021
Published in Issue Year 2021 Volume: 13 Issue: 2

Cite

APA Civan, L., Kurama, S., & Ayas, E. (2021). Termokromik Pigment İçeren Kaplamalarda İşlem Sıcaklık Etkisi. International Journal of Engineering Research and Development, 13(2), 462-477. https://doi.org/10.29137/umagd.874818

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.