Araştırma Makalesi
BibTex RIS Kaynak Göster

PLC Kontrollü Glove Box Tasarımı ve Atmosferindeki Oksijen Seviyesinin Kontrolü

Yıl 2022, Cilt: 14 Sayı: 1, 338 - 346, 31.01.2022
https://doi.org/10.29137/umagd.1004275

Öz

Glove box sistemleri yaşadığımız atmosfer ortamından, deney yapılacak içerideki ortam atmosferini yalıtır. Bu tip sistemler sızdırmazlık sağlayarak deney yapılan iç atmosferi dışarıdan izole eden bir yapıya sahiptir. Ayrıca glove boxlar şeffaf bir yapıya sahip olmasından dolayı içeride yapılacak deney ve testlerin her an izlenmesine de imkan vermektedir. Uzun kollu eldiven kullanılarak eldiven kutusu içinde devam eden deneyin el ile kontrol edilerek müdahale edilebilmesi bu kontrollü atmosfer içinde kapsamlı deneyler yapılabilmesini de mümkün kılmaktadır. Batarya üretim hatlarında, mesela lityium gibi oksijen olan ortamda alev alabilen kimyasallar kullanıldığında yada OLED(organik ışık yayan diyot) üretiminin sorunsuzca yapılabilmesi için, kontrollü düşük oksijen atmosferine sahip glove box sistemlerinin kullanılması gereklidir. Bu sistemlerin en basit yapıda olan; atmosfer kontrol sistemi içermeyen cihaz fiyatları 20 bin euro seviyesinden başlamaktadır. İçerideki atmosfer kontrolü olan ve atmosferde bulunan oksijen seviyesi kontrol edilebilenlerin fiyatları ise 100 bin euro üstünde fiyat seviyelerine kadar çıkmaktadır. Yerli imkanlar ile çok uygun bir fiyata pleksiglass malzemeden glove box tasarımı yapılmıştır. Bu sistemde iç ortamın oksijen seviyesi devamlı aşağıya çekilebilmesi için periyodik olarak vakum yapabilen ve periyodik olarak içeriye inert argon gazı verebilen bir sistem tasarlanmıştır. Elektrokimyasal sensor ve ölçü aleti kullanılarak atmosfer oksijeni kontrol edilmiştir.

Teşekkür

Bilimsel ve Teknolojik Araştırmalar Uygulama ve Araştırma Merkezi Müdürlüğüne verdikleri destek için teşekkür ederim

Kaynakça

  • Doğan, M. (2020). Determining the lowest sulfur detection limit in diesel fuel by ultraviolet fluorescence. Phosphorus, Sulfur, and Silicon and the Related Elements, 196(1), 47-53.
  • Doğan, M. (2021). Polymer-layered oxygen sensor design and testing. Journal of Materials Science: Materials in Electronics, 1-11.
  • Doğan, M. (2021). Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 84( 11), 2774-2783.
  • Doğan, M., Erdem, Ü., & Ökten, S. (2021). Production of organic light-emitting diode with fluorescence featured quinoline derivative. International Journal of Chemistry and Technology, 5 (2) , 172-177.
  • Fedorova, A. A., Anishchenko, D. V., Beletskii, E. V., Kalnin, A. Y., & Levin, O. V. (2021). Modeling of the overcharge behavior of lithium-ion battery cells protected by a voltage-switchable resistive polymer layer. Journal of Power Sources, 510, 230392.
  • Frohn, A., Dick, H. B., Augustin, A. J., & Grus, F. H. (2001). Late opacification of the foldable hydrophilic acrylic lens SC60BOUV. Ophthalmology, 108(11), 1999-2004
  • Kerlau, M., Marcinek, M., Srinivasan, V., & Kostecki, R. M. (2007). Reprint of “Studies of local degradation phenomena in composite cathodes for lithium-ion batteries”. Electrochimica Acta, 53(3), 1385-1392.
  • Kucenic, M. J., Patel, M., Feldman, S. R., Liguori, A., & Fleischer, A. B. (2002). Visual discrimination testing of ultraviolet transmitting and ultraviolet blocking acrylic thermoplastics. Photodermatology, photoimmunology & photomedicine, 18(5), 228-231.
  • Kumar, V. S., Kumar, R., Sivaraman, N., Ravisankar, G., & Vasudeva Rao, P. R. (2010). Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements. Review of Scientific Instruments, 81(9), 094101.
  • Lee, S., Kim, S. H., Jo, Y. Y., Ju, W. T., Kim, H. B., & Kweon, H. (2021). Effects of ultraviolet light irradiation on silk fibroin films prepared under different conditions. Biomolecules, 11(1), 70.
  • Liu, D. , QingXin, Z., YanQing, Y., HongFei, L., LiJia, C., QunLiang, S. (2020). Controllable Multistep Preparation Method for High Efficiency Perovskite Solar Cells with Low Annealing Temperature in Glove Box. Energy Technology, 8( 7), 2000071.
  • Pal, K., SI, A., Stephen, R., & Thomas, S. (2021). Conductive Polymer Nanocomposites for Organic Light-Emitting Diodes (OLEDs). Handbook of Polymer and Ceramic Nanotechnology, 281-292.
  • Petrova, E. V., Avadhanula, V., Michel, S., Gincoo, K. E., Piedra, P. A., & Anandasabapathy, S. (2019). Remote laboratory management: respiratory virus diagnostics. JoVE (Journal of Visualized Experiments), (146), e59188.
  • Spyratou, E., Antonakos, I., Kareliotis, G., Bacharis, C., & Efstathopoulos, E. P. (2021). X-ray radiation affects the protection filter of yellow-tinted acrylic hydrophobic intraocular lenses against harmful UV-A and blue light. Hellenic Journal οf Radiology, 6(3).
  • Szolga, L. A., & Stan, C. A. (2021). Plexiglass glove box for organic solar cells. In IOP Conference Series: Materials Science and Engineering (Vol. 1032, No. 1, p. 012048). IOP Publishing.
  • Vauchy, R., Fouquet-Métivier, P., Martin, P. M., Maillard, C., Solinhac, I., Guéneau, C., & Léorier, C. (2021). New sample stage for characterizing radioactive materials by X-ray powder diffraction: application on five actinide dioxides ThO2, UO2, NpO2, PuO2 and AmO2. Journal of Applied Crystallography, 54(2), 636-643.
  • Zhou, S., Wu, L., Xiong, M., He, Q., & Chen, G. (2005). Dispersion and UV-VIS Properties of Nanoparticles in Coatings. Journal of dispersion science and technology, 25(4), 417-433.

PLC-Controlled Glove Box Design and Control of the Oxygen Level in the Atmosphere

Yıl 2022, Cilt: 14 Sayı: 1, 338 - 346, 31.01.2022
https://doi.org/10.29137/umagd.1004275

Öz

Glove box systems insulate the atmosphere, in which we live from the atmosphere of the environment in which the experiments will be conducted. Such systems also have a special structure which insulates the inner atmosphere of the experiment from the outside by providing a seal. In addition, glove boxes have a transparent structure, which allows you to monitor the experiments and tests to be carried out inside at any time. Glovebox systems give ability to intervene the ongoing experiment in the glove box manually controlling using long-sleeved gloves. Also it makes possible to conduct extensive difficult experiments in this controlled atmosphere. For example lithium battery production lines, oxygen sensitive flammable chemical related experiments also OLED(organic light emitting diode) test and production levels must be done smoothly for the production of controlled low-oxygen atmosphere with the use of a glove box system is a necessity. In the market the simplest of these systems of devices without an atmosphere control system start at the level of 20 thousand euros. The prices of those which atmospheric controlled ones prices reach levels above 100 thousand euros. Glove box design is made of plexiglass material at a very affordable price with domestic facilities. In this system, a system that can periodically vacuum and periodically deliver inert argon gas inside is designed so that the oxygen level of the indoor environment can be continuously lowered. Atmospheric oxygen level was controlled using an electrochemical sensor with a multimeter.

Kaynakça

  • Doğan, M. (2020). Determining the lowest sulfur detection limit in diesel fuel by ultraviolet fluorescence. Phosphorus, Sulfur, and Silicon and the Related Elements, 196(1), 47-53.
  • Doğan, M. (2021). Polymer-layered oxygen sensor design and testing. Journal of Materials Science: Materials in Electronics, 1-11.
  • Doğan, M. (2021). Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 84( 11), 2774-2783.
  • Doğan, M., Erdem, Ü., & Ökten, S. (2021). Production of organic light-emitting diode with fluorescence featured quinoline derivative. International Journal of Chemistry and Technology, 5 (2) , 172-177.
  • Fedorova, A. A., Anishchenko, D. V., Beletskii, E. V., Kalnin, A. Y., & Levin, O. V. (2021). Modeling of the overcharge behavior of lithium-ion battery cells protected by a voltage-switchable resistive polymer layer. Journal of Power Sources, 510, 230392.
  • Frohn, A., Dick, H. B., Augustin, A. J., & Grus, F. H. (2001). Late opacification of the foldable hydrophilic acrylic lens SC60BOUV. Ophthalmology, 108(11), 1999-2004
  • Kerlau, M., Marcinek, M., Srinivasan, V., & Kostecki, R. M. (2007). Reprint of “Studies of local degradation phenomena in composite cathodes for lithium-ion batteries”. Electrochimica Acta, 53(3), 1385-1392.
  • Kucenic, M. J., Patel, M., Feldman, S. R., Liguori, A., & Fleischer, A. B. (2002). Visual discrimination testing of ultraviolet transmitting and ultraviolet blocking acrylic thermoplastics. Photodermatology, photoimmunology & photomedicine, 18(5), 228-231.
  • Kumar, V. S., Kumar, R., Sivaraman, N., Ravisankar, G., & Vasudeva Rao, P. R. (2010). Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements. Review of Scientific Instruments, 81(9), 094101.
  • Lee, S., Kim, S. H., Jo, Y. Y., Ju, W. T., Kim, H. B., & Kweon, H. (2021). Effects of ultraviolet light irradiation on silk fibroin films prepared under different conditions. Biomolecules, 11(1), 70.
  • Liu, D. , QingXin, Z., YanQing, Y., HongFei, L., LiJia, C., QunLiang, S. (2020). Controllable Multistep Preparation Method for High Efficiency Perovskite Solar Cells with Low Annealing Temperature in Glove Box. Energy Technology, 8( 7), 2000071.
  • Pal, K., SI, A., Stephen, R., & Thomas, S. (2021). Conductive Polymer Nanocomposites for Organic Light-Emitting Diodes (OLEDs). Handbook of Polymer and Ceramic Nanotechnology, 281-292.
  • Petrova, E. V., Avadhanula, V., Michel, S., Gincoo, K. E., Piedra, P. A., & Anandasabapathy, S. (2019). Remote laboratory management: respiratory virus diagnostics. JoVE (Journal of Visualized Experiments), (146), e59188.
  • Spyratou, E., Antonakos, I., Kareliotis, G., Bacharis, C., & Efstathopoulos, E. P. (2021). X-ray radiation affects the protection filter of yellow-tinted acrylic hydrophobic intraocular lenses against harmful UV-A and blue light. Hellenic Journal οf Radiology, 6(3).
  • Szolga, L. A., & Stan, C. A. (2021). Plexiglass glove box for organic solar cells. In IOP Conference Series: Materials Science and Engineering (Vol. 1032, No. 1, p. 012048). IOP Publishing.
  • Vauchy, R., Fouquet-Métivier, P., Martin, P. M., Maillard, C., Solinhac, I., Guéneau, C., & Léorier, C. (2021). New sample stage for characterizing radioactive materials by X-ray powder diffraction: application on five actinide dioxides ThO2, UO2, NpO2, PuO2 and AmO2. Journal of Applied Crystallography, 54(2), 636-643.
  • Zhou, S., Wu, L., Xiong, M., He, Q., & Chen, G. (2005). Dispersion and UV-VIS Properties of Nanoparticles in Coatings. Journal of dispersion science and technology, 25(4), 417-433.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Makaleler
Yazarlar

Mustafa Doğan 0000-0002-4437-566X

Yayımlanma Tarihi 31 Ocak 2022
Gönderilme Tarihi 4 Ekim 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 14 Sayı: 1

Kaynak Göster

APA Doğan, M. (2022). PLC Kontrollü Glove Box Tasarımı ve Atmosferindeki Oksijen Seviyesinin Kontrolü. International Journal of Engineering Research and Development, 14(1), 338-346. https://doi.org/10.29137/umagd.1004275
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.