Effects of Boronizing on Corrosion Rate of 21NiCrMo2 Steel
Year 2022,
Volume: 14 Issue: 1, 1 - 9, 31.01.2022
Salih Uğur Bayça
,
Hamza Efe
Abstract
21NiCrMo2 steel is a steel with low corrosion resistance. The aim of this study is to increase the corrosion resistance of 21NiCrMo2 steel by solid boriding method. 21NiCrMo2 steel was borided at 700oC and for 4, 8, 12 and 16 hours. Baybora-1, a domestic boronizing agent, was used as the boronizing agent. The morphology of the metal-boride layer and the transition layer of the samples were determined by SEM device. The phase analyzes of the metal-boride layer formed on the surface of the boronized samples were made with the XRD device. Corrosion test of boronized and non boronized steel samples was carried out in hot sulfuric acid solution according to ASTM G31-72 standard. The corrosion resistance of the samples was determined by the weight loss method. While the corrosion resistance of boronized samples was 323 mm/year, it was determined that the non-boronized sample was 491 mm/year.
Project Number
Kırıkkale Üniversitesi BAP 2020-13
References
- Akbayır, O. (2005). The effect of treatment parameters on surface and wear properties of boronized AISI 1030 steel by pack method, Thesis, Osmangazi University.
- An, J., Su, Z. G., Gao, X. X., Yang, Y. L., & Sun, S. J. (2012). Corrosion Characteristics of Boronized AISI 8620 Steel in Oil Field Water Containing H2S, Physicochemical problems on materials protection 48, 487 – 494.
- An., J., Li., C., Wen, Z., Yang, Y.L., & Sun, S.J. (2012). A Study of boronizing of steel AISI 8620 for sucker rod Metal Scence and Heat Treatment 53, 598 – 602.
- ASTM G31-72 (2004). Standard practice for laboratory immersion corrosion testing of metals, USA.
- Bayca, S.U., & Sahin, S. (2004). Boriding, Machinery and Engineer, TMMOB, Chamber of Mechanical Engineers, Ankara, 532, 51 – 59.
- Bayça, S.U. (2021). Bir katı borlama ajanı, Patent no: TR2021/007143.
- Bayça, S.U., Bican, O., Yamanel, B., Hekimoğlu A.P., & Çalış, M. (2020). The Effect of Solid Boriding Time on the Structure, Hardness and Corrosion Properties of AISI 5140 Steel, Protection of metals and Physical Chemistry of Surfaces, 56, (3) 591–597.
- Bican, O., Bayca, S.U., Ocak-Araz, S., Yamanel, B., & Tanis, N.A. (2020). Effects of the boriding process and of quenching and tempering after boriding on the microstructure, hardness and wear of AISI 5140 steel, Surface Review and Letters, 27, (6) 1950157–1– 9.
- Bican, O., Bayça, S.U., Kuleyin, H., & Gümrük, R., (2021). Effect of boronizing operating stability of steel AISI 304L under erosion impact of hard particles, Metal Science and Heat Treatment, 63, (3-4) 156 - 162.
- Calik A.,, Duzgun, A., Ekinci, A.E., Karakas, S., & Ucar, N., (2009). Comparison of Hardness and Wear behaviour of Boronized and Carburized AISI 8620 Steels, Acta Physica Polonica A 116, 1029-1032.
- Fichtl, W. (1981). Boronizing and its practical applications, Materials in engineering 2, 276 – 286.
- Genel, K. (2006). Boriding kinetics of H13 steel, Vacuum 80, 451–457.
- Gunes, I., Ulker, S., & Taktak, S. (2011). Plasma paste boronizing of AISI 8620, 52100 and 440C steels, Materials design 32, 2980-2986.
- Gunes, I., Ulker, S., & Taktak, S. (2013). Kinetics of Plasma Paste Boronized AISI 8620 Steel in Borax Paste Mixtures, Protection of Metals and Physical Chemistry of Surfaces, 49, 567–573.
- Kayali, Y., Gunes, I., & Ulu, S. (2012). Diffusion kinetics of borided AISI 52100 and AISI 440C steels. Vacuum 86, 1428 – 1434.
- Matuschka, A.G. (1980). Boronizing, Carl Hanser Verlag, München, Germany.
- Ocak-Araz, S., Gumus, H., Bayca, S.U., & Aydin, A. (2021). Investigation of gamma-ray attenuation coefficients for solid boronized 304L tainless steel, Applied Radiation and Isotopes, 170, 109605.
- Uslu, I., Comert, H., Ipek, M., Celebi, F.G., Ozdemir, O., & Bindal, C. (2007). A comparison of borides formed on AISI 1040 and AISI P20 steels, Materials and Design 28, 1819–1826.
- Xu, C.H., Gao, W., & Yang, Y.L. (2000). Superplastic Boronizing of a Low Alloy Steel- Microstructural Aspects, Journal of Materials Processing Technology, 108, 349-355.
21NiCrMo2 Çeliğinin Korozyon Hızına Borlama İşleminin Etkileri
Year 2022,
Volume: 14 Issue: 1, 1 - 9, 31.01.2022
Salih Uğur Bayça
,
Hamza Efe
Abstract
21NiCrMo2 çeliği korozyona dayanımı düşük bir çeliktir. Bu çalışmanın amacı, katı borlama yöntemi ile 21NiCrMo2 çeliğinin korozyon dayanımı artırmaktır. 21NiCrMo2 çeliği 700oC sıcaklık ve 4, 8, 12 ve 16 saat sürelerde borlama işlemine tabi tutulmuştur. Borlama ajanı olarak yerli borlama ajanı olan Baybora-1 kullanılmıştır. Numunelerin metal-borür tabakası ve geçiş tabakasının morfolojisi SEM cihazı ile belirlenmiştir. Borlanmış numunelerin yüzeyinde oluşan metal-borür tabakasının faz analizleri XRD cihazı ile yapılmıştır. Borlanmış ve borlanmamış çelik numunelerin korozyon deneyi ASTM G31-72 standardına göre sıcak sülfirik asit çözeltisinde yapılmıştır. Numunelerin korozyon dayanımı ağırlık kaybı yöntemi ile belirlenmiştir. Borlanmış numunelerin korozyon dayanımı 323 mm/yıl iken borlanmamış numunenin 491 mm/yıl olduğu belirlenmiştir.
Project Number
Kırıkkale Üniversitesi BAP 2020-13
References
- Akbayır, O. (2005). The effect of treatment parameters on surface and wear properties of boronized AISI 1030 steel by pack method, Thesis, Osmangazi University.
- An, J., Su, Z. G., Gao, X. X., Yang, Y. L., & Sun, S. J. (2012). Corrosion Characteristics of Boronized AISI 8620 Steel in Oil Field Water Containing H2S, Physicochemical problems on materials protection 48, 487 – 494.
- An., J., Li., C., Wen, Z., Yang, Y.L., & Sun, S.J. (2012). A Study of boronizing of steel AISI 8620 for sucker rod Metal Scence and Heat Treatment 53, 598 – 602.
- ASTM G31-72 (2004). Standard practice for laboratory immersion corrosion testing of metals, USA.
- Bayca, S.U., & Sahin, S. (2004). Boriding, Machinery and Engineer, TMMOB, Chamber of Mechanical Engineers, Ankara, 532, 51 – 59.
- Bayça, S.U. (2021). Bir katı borlama ajanı, Patent no: TR2021/007143.
- Bayça, S.U., Bican, O., Yamanel, B., Hekimoğlu A.P., & Çalış, M. (2020). The Effect of Solid Boriding Time on the Structure, Hardness and Corrosion Properties of AISI 5140 Steel, Protection of metals and Physical Chemistry of Surfaces, 56, (3) 591–597.
- Bican, O., Bayca, S.U., Ocak-Araz, S., Yamanel, B., & Tanis, N.A. (2020). Effects of the boriding process and of quenching and tempering after boriding on the microstructure, hardness and wear of AISI 5140 steel, Surface Review and Letters, 27, (6) 1950157–1– 9.
- Bican, O., Bayça, S.U., Kuleyin, H., & Gümrük, R., (2021). Effect of boronizing operating stability of steel AISI 304L under erosion impact of hard particles, Metal Science and Heat Treatment, 63, (3-4) 156 - 162.
- Calik A.,, Duzgun, A., Ekinci, A.E., Karakas, S., & Ucar, N., (2009). Comparison of Hardness and Wear behaviour of Boronized and Carburized AISI 8620 Steels, Acta Physica Polonica A 116, 1029-1032.
- Fichtl, W. (1981). Boronizing and its practical applications, Materials in engineering 2, 276 – 286.
- Genel, K. (2006). Boriding kinetics of H13 steel, Vacuum 80, 451–457.
- Gunes, I., Ulker, S., & Taktak, S. (2011). Plasma paste boronizing of AISI 8620, 52100 and 440C steels, Materials design 32, 2980-2986.
- Gunes, I., Ulker, S., & Taktak, S. (2013). Kinetics of Plasma Paste Boronized AISI 8620 Steel in Borax Paste Mixtures, Protection of Metals and Physical Chemistry of Surfaces, 49, 567–573.
- Kayali, Y., Gunes, I., & Ulu, S. (2012). Diffusion kinetics of borided AISI 52100 and AISI 440C steels. Vacuum 86, 1428 – 1434.
- Matuschka, A.G. (1980). Boronizing, Carl Hanser Verlag, München, Germany.
- Ocak-Araz, S., Gumus, H., Bayca, S.U., & Aydin, A. (2021). Investigation of gamma-ray attenuation coefficients for solid boronized 304L tainless steel, Applied Radiation and Isotopes, 170, 109605.
- Uslu, I., Comert, H., Ipek, M., Celebi, F.G., Ozdemir, O., & Bindal, C. (2007). A comparison of borides formed on AISI 1040 and AISI P20 steels, Materials and Design 28, 1819–1826.
- Xu, C.H., Gao, W., & Yang, Y.L. (2000). Superplastic Boronizing of a Low Alloy Steel- Microstructural Aspects, Journal of Materials Processing Technology, 108, 349-355.