Stentin İn vitro bozunma hızı ve toksik bozunma ürünleri
Year 2022,
Volume: 14 Issue: 2, 653 - 662, 31.07.2022
Mustafa Doğan
,
Yaşar Aluç
Abstract
Tıbbi stentler metal veya plastik tel örgüden yapılmış tüplerdir. Anatomik bir damarı veya geçidi açık tutmak için bir vücut parçasının içi boş bir yapısına yerleştirilirler. Vücuda yerleştirilen stentler, metal iyonlarının vücuda salınmasıyla toksik etkilere neden olabileceği gibi, korozyon ürünleri oluşturarak vücuda zararlı etkilere de neden olabilir. Bu çalışmada, tıbbi amaçlı üretilen nitinol yapılı bir stent örneğinin yapay vücut sıvısında (PBS) korozyon ürünlerinin ayrışma hızı ve salınımı incelenmiştir. Vücutta herhangi bir metal ayrışırsa, insan hayatını tehlikeye atabilir ve vücutta uzun süre biriken ağır metal kalıntıları ve toksik radikal ürünler yoluyla vücuda zarar verebilir. 10993-13 standardına göre in vitro bozunma testi yapıldı ve nitinol için kısa sürelerden (bir ay) sonra metal salınım değerleri bulundu. Bu çalışmada uzun süreli vücut içi kullanımda nikel ve titanyumun vücut içindeki salınım değerleri ve olası toksik etkileri incelenmiştir. Bozulmanın neden olduğu kütle kaybı hesaplanarak, vücut içindeki ağır metal salınımı ile ilişkisi ve ağır metal kalıntılarının insan sağlığı üzerindeki olası yan etkileri değerlendirildi. Bozunmadan kaynaklanan ağır metallerin düşük metal iyon salınım değerleri ICP-OES cihazı ile belirlenmiştir. Bozulma oranları ile karşılaştırmak ve değerlendirmek için stent parçalarının yüzeyindeki fiziksel değişiklikler (çap) de ölçüldü.
Thanks
Kırıkkale Üniversitesi Bilimsel ve Teknolojik Araştırmalar Uygulama ve Araştırma Merkezi Müdürlüğü(KÜBTUAM) merkezine verdikleri destek ve yardımlar için teşekkür ederiz.
References
- Butler, T. J., Jackson, R. W., Robson, J. Y., Owen, R. J., Delves, H. T., Sieniawska, C. E., & Rose, J. D. (2000). In vivo degradation of tungsten embolisation coils. The British journal of radiology, 73(870), 601-603.
- Doğan, M. (2020). Determining the lowest sulfur detection limit in diesel fuel by ultraviolet fluorescence. Phosphorus, Sulfur, and Silicon and the Related Elements, 196(1), 47-53.
- Haddad, E., & Zikovsky, L. (1985). Determination of Al, As, Co, Cr, Cs, Fe, Mn, Sb, Sc, W and Zn in the workroom air by instrumental neutron activation analysis. Journal of radioanalytical and nuclear chemistry, 93(6), 371-378.
- Keith, S. (2005). Toxicological profile for tungsten. Agency for Toxic Substances and Disease Registry.
- Kim, K. T., Eo, M. Y., Nguyen, T. T. H., & Kim, S. M. (2019). General review of titanium toxicity. International journal of implant dentistry, 5(1), 1-12.
- Knowles, A. J., Dye, D., Dodds, R. J., Watson, A., Hardie, C. D., & Humphry-Baker, S. A. (2021). Tungsten-based bcc-superalloys. Applied Materials Today, 23, 101014.
- Mazumder, M. M., De, S., Trigwell, S., Ali, N., Mazumder, M. K., & Mehta, J. L. (2003). Corrosion resistance of polyurethane-coated nitinol cardiovascular stents. Journal of Biomaterials Science, Polymer Edition, 14(12), 1351-1362.
- McInturf, S. M., Bekkedal, M. Y. V., Wilfong, E., Arfsten, D., Chapman, G., & Gunasekar, P. G. (2011). The potential reproductive, neurobehavioral and systemic effects of soluble sodium tungstate exposure in Sprague–Dawley rats. Toxicology and applied pharmacology, 254(2), 133-137.
- Nyrén, O., McLaughlin, J. K., Gridley, G., Ekbom, A., Johnell, O., Fraumeni Jr, J. F., & Adami, H. O. (1995). Cancer risk after hip replacement with metal implants: a population-based cohort study in Sweden. JNCI: Journal of the National Cancer Institute, 87(1), 28-33.
- Rae, T. (1981). The toxicity of metals used in orthopaedic prostheses. An experimental study using cultured human synovial fibroblasts. The Journal of bone and joint surgery. British volume, 63(3), 435-440.
- Sciurba, F. C., Criner, G. J., Strange, C., Shah, P. L., Michaud, G., Connolly, T. A., ... & RENEW Study Research Group. (2016). Effect of endobronchial coils vs usual care on exercise tolerance in patients with severe emphysema: the RENEW randomized clinical trial. Jama, 315(20), 2178-2189.
- Shih, C. C., Lin, S. J., Chen, Y. L., Su, Y. Y., Lai, S. T., Wu, G. J., & Chung, K. H. (2000). The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 52(2), 395-403.
- Van der Voet, G. B., Todorov, T. I., Centeno, J. A., Jonas, W., Ives, J., & Mullick, F. G. (2007). Metals and health: a clinical toxicological perspective on tungsten and review of the literature. Military medicine, 172(9), 1002-1005.
- Wild, P., Perdrix, A., Romazini, S., Moulin, J. J., & Pellet, F. (2000). Lung cancer mortality in a site producing hard metals. Occupational and environmental medicine, 57(8), 568-573.
Stent' In Vitro Degradation Rate and Toxic Degradation Products
Year 2022,
Volume: 14 Issue: 2, 653 - 662, 31.07.2022
Mustafa Doğan
,
Yaşar Aluç
Abstract
Medical stents are tubes made of a metal or plastic wire mesh. They are inserted into a hollow structure of a body part to keep an anatomic vessel or passageway open. Stents placed in the body can cause toxic effects by releasing metal ions into the body, and can also cause harmful effects on the body by creating corrosion products. In this study, the decomposition rate and release of corrosion products in artificial body fluid (PBS) of a stent sample with a nitinol structure produced for medical purposes were examined. If any metal decomposes in the body, it can endanger human life and can damage the body via heavy metal residues and toxic radical products that accumulate over long periods in the body. An in vitro degradation test was performed according to the standard 10993-13 and metal release values were found after short periods (one month) for nitinol. In the present study, the release values and possible toxic effects of nickel and titanium within the body with long-term intra-body use were examined. By calculating the mass loss caused by degradation, its relationship to heavy metal release inside the body and the possible side effects on human health of heavy metal residues were evaluated. Low metal ion release values of heavy metals resulting from degradation were determined by the ICP-OES device. Physical changes (diameter) in the surface of stent parts were also measured to compare and evaluate with the degradation rates.
References
- Butler, T. J., Jackson, R. W., Robson, J. Y., Owen, R. J., Delves, H. T., Sieniawska, C. E., & Rose, J. D. (2000). In vivo degradation of tungsten embolisation coils. The British journal of radiology, 73(870), 601-603.
- Doğan, M. (2020). Determining the lowest sulfur detection limit in diesel fuel by ultraviolet fluorescence. Phosphorus, Sulfur, and Silicon and the Related Elements, 196(1), 47-53.
- Haddad, E., & Zikovsky, L. (1985). Determination of Al, As, Co, Cr, Cs, Fe, Mn, Sb, Sc, W and Zn in the workroom air by instrumental neutron activation analysis. Journal of radioanalytical and nuclear chemistry, 93(6), 371-378.
- Keith, S. (2005). Toxicological profile for tungsten. Agency for Toxic Substances and Disease Registry.
- Kim, K. T., Eo, M. Y., Nguyen, T. T. H., & Kim, S. M. (2019). General review of titanium toxicity. International journal of implant dentistry, 5(1), 1-12.
- Knowles, A. J., Dye, D., Dodds, R. J., Watson, A., Hardie, C. D., & Humphry-Baker, S. A. (2021). Tungsten-based bcc-superalloys. Applied Materials Today, 23, 101014.
- Mazumder, M. M., De, S., Trigwell, S., Ali, N., Mazumder, M. K., & Mehta, J. L. (2003). Corrosion resistance of polyurethane-coated nitinol cardiovascular stents. Journal of Biomaterials Science, Polymer Edition, 14(12), 1351-1362.
- McInturf, S. M., Bekkedal, M. Y. V., Wilfong, E., Arfsten, D., Chapman, G., & Gunasekar, P. G. (2011). The potential reproductive, neurobehavioral and systemic effects of soluble sodium tungstate exposure in Sprague–Dawley rats. Toxicology and applied pharmacology, 254(2), 133-137.
- Nyrén, O., McLaughlin, J. K., Gridley, G., Ekbom, A., Johnell, O., Fraumeni Jr, J. F., & Adami, H. O. (1995). Cancer risk after hip replacement with metal implants: a population-based cohort study in Sweden. JNCI: Journal of the National Cancer Institute, 87(1), 28-33.
- Rae, T. (1981). The toxicity of metals used in orthopaedic prostheses. An experimental study using cultured human synovial fibroblasts. The Journal of bone and joint surgery. British volume, 63(3), 435-440.
- Sciurba, F. C., Criner, G. J., Strange, C., Shah, P. L., Michaud, G., Connolly, T. A., ... & RENEW Study Research Group. (2016). Effect of endobronchial coils vs usual care on exercise tolerance in patients with severe emphysema: the RENEW randomized clinical trial. Jama, 315(20), 2178-2189.
- Shih, C. C., Lin, S. J., Chen, Y. L., Su, Y. Y., Lai, S. T., Wu, G. J., & Chung, K. H. (2000). The cytotoxicity of corrosion products of nitinol stent wire on cultured smooth muscle cells. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 52(2), 395-403.
- Van der Voet, G. B., Todorov, T. I., Centeno, J. A., Jonas, W., Ives, J., & Mullick, F. G. (2007). Metals and health: a clinical toxicological perspective on tungsten and review of the literature. Military medicine, 172(9), 1002-1005.
- Wild, P., Perdrix, A., Romazini, S., Moulin, J. J., & Pellet, F. (2000). Lung cancer mortality in a site producing hard metals. Occupational and environmental medicine, 57(8), 568-573.