Review
BibTex RIS Cite

Investigation of the Effect of Temperature and Strain Rate on Mechanical Properties

Year 2022, Volume: 14 Issue: 2, 406 - 419, 31.07.2022
https://doi.org/10.29137/umagd.987547

Abstract

The tensile test is one of the most basic and simple tests in which the material is pulled in a single axis until it breaks and allow us to recognize the material from the data obtained from it. While recognizing materials, their behavior under different temperatures and strain rates is also important. Especially in the manufacturing industry, there are many different production and shaping methods, and each has its own characteristics. For example, in the hot deep drawing process, the mechanical properties of the material can be determined by hot tensile tests. At the same time, this situation has become more important with the development of finite element analysis programs. Because modeling under the same conditions is very effective on the accuracy of the results. In this study, the effects of temperature and strain rate on tensile properties are investigated in steel, titanium, aluminum and nickel alloys. In the examinations, it is seen that the change of the temperature and strain rate for these materials have a great effect on the stress and ductility.

References

  • Alsagabi, S., Alqahtani, M. & Alajlan, A., (2018). The Elevated Temperature Deformation of G115 Steel and the Associated Deformation Mechanism. International Journal of Advances in Materials Science and Engineering (IJAMSE), 7 (1): 1-7. https://doi.org/10.14810/ijamse.2018.7101
  • Altan, T. & Long, J., (2015). Forming Aluminum Alloys at Elevated Temperatures, Part 1, How Process Details Change for Warm and Hot Forming. Stamping Journal, 1 (1): 1-4.
  • Attar, H. R., Li, N. & Foster, A., (2021). A New Design Guideline Development Strategy for Aluminium Alloy Corners Formed through Cold and Hot Stamping Processes. Materials Design, 207 (1): 109856. https://doi.org/10.1016/j.matdes.2021.109856
  • Borek, W., Lis, M., Gołombek, K., Sakiewicz, P. & Piotrowski, K., (2019). Effect of Plastic Deformation Rate at Room Temperature on Structure and Mechanical Properties of High-Mn Austenitic Mn-Al-Si 25-3-3 Type Steel. Archives of Materials Science and Engineering, 96 (1): 22-31.
  • Dai, Q., Deng, Y., Jiang, H., Tang, J. & Chen, J., (2019). Hot Tensile Deformation Behaviors and a Phenomenological Aa5083 Aluminum Alloy Fracture Damage Model. Materials Science and Engineering: A, 766 (1): 138325. https://doi.org/10.1016/j.msea.2019.138325
  • Despax, L., Vidal, V., Delagnes, D., Dehmas, M., Matsumoto, H. & Velay, V., (2020). Influence of Strain Rate and Temperature on the Deformation Mechanisms of a Fine-Grained Ti-6al-4v Alloy. Materials Science and Engineering: A, 790 (1): 139718. https://doi.org/10.1016/j.msea.2020.139718
  • Gruber, B., Weißensteiner, I., Kremmer, T., Grabner, F., Falkinger, G., Schökel, A., Spieckermann, F., Schäublin, R., Uggowitzer, P. J. & Pogatscher, S., (2020). Mechanism of Low Temperature Deformation in Aluminium Alloys. Materials Science and Engineering: A, 795 (1): 139935. https://doi.org/10.1016/j.msea.2020.139935
  • Haitao, X., Dengke, W. & Kaihong, S., (2020). Effect of Deformation Temperature on Mechanical Properties and Microstructure of Twip Steel for Expansion Tube. High Temperature Materials and Processes, 39 (1): 63-73. doi:10.1515/htmp-2020-0020
  • Hao, F., Xiao, J., Feng, Y., Wang, Y., Ju, J., Du, Y., Wang, K., Xue, L. n., Nie, Z. & Tan, C., (2020). Tensile Deformation Behavior of a near-Α Titanium Alloy Ti-6al-2zr-1mo-1v under a Wide Temperature Range. Journal of Materials Research and Technology, 9 (3): 2818-2831. https://doi.org/10.1016/j.jmrt.2020.01.016
  • Jiang, Y.-Q., Lin, Y. C., Jiang, X.-Y., He, D.-G., Zhang, X.-Y. & Kotkunde, N., (2020). Hot Tensile Properties, Microstructure Evolution and Fracture Mechanisms of Ti-6al-4v Alloy with Initial Coarse Equiaxed Phases. Materials Characterization, 163 (1): 110272. https://doi.org/10.1016/j.matchar.2020.110272
  • Kilic, S., (2019). Experimental and Numerical Investigation of the Effect of Different Temperature and Deformation Speeds on Mechanical Properties and Springback Behaviour in Al-Zn-Mg-Cu Alloy. Mechanics, 25 (5): 406-412.
  • Kilic, S., Kacar, I. & Ozturk, F., (2019). New Trend in Aerospace Industry: Al-Li Based Alloys. Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1): 275-296.
  • Kilic, S. & Ozturk, F., (2017). Evaluation of Formability under Different Deformation Modes for Twip900 Steel. Journal of Engineering Materials and Technology, 139 (3): 031001. 10.1115/1.4035621
  • Kilic, S., Ozturk, F. & Picu, C. R., (2018). Investigation of the Performance of Flow Models for Twip Steel. Journal of materials engineering and performance, 27 (8): 4364-4371. 10.1007/s11665-018-3504-6
  • Koga, N., Nameki, T., Umezawa, O., Tschan, V. & Weiss, K.-P., (2021). Tensile Properties and Deformation Behavior of Ferrite and Austenite Duplex Stainless Steel at Cryogenic Temperatures. Materials Science and Engineering: A, 801 (1): 140442. https://doi.org/10.1016/j.msea.2020.140442
  • Kori, P., Vadavadagi, B. H. & Khatirkar, R. K., (2020). Hot Deformation Characteristics of Ass-304 Austenitic Stainless Steel by Tensile Tests. Materials Today: Proceedings, 28 (1): 1895-1898. https://doi.org/10.1016/j.matpr.2020.05.303
  • Kundu, A., Field, D. P. & Chandra Chakraborti, P., (2020). Effect of Strain and Strain Rate on the Development of Deformation Heterogeneity During Tensile Deformation of a Solution Annealed 304 Ln Austenitic Stainless Steel: An Ebsd Study. Materials Science and Engineering: A, 773 (1): 138854. https://doi.org/10.1016/j.msea.2019.138854
  • Li, D., Feng, Y., Yin, Z., Shangguan, F., Wang, K., Liu, Q. & Hu, F., (2011). Prediction of Hot Deformation Behaviour of Fe–25mn–3si–3al Twip Steel. Materials Science and Engineering: A, 528 (28): 8084-8089. https://doi.org/10.1016/j.msea.2011.07.073
  • Li, Q., Ning, J., Chen, L., Hu, J. & Liu, Y., (2020). The Mechanical Response and Microstructural Evolution of 2195 Al–Li Alloy During Hot Tensile Deformation. Journal of Alloys and Compounds, 848 (1): 156515. https://doi.org/10.1016/j.jallcom.2020.156515
  • Lin, Y. C., Li, K.-K., Li, H.-B., Chen, J., Chen, X.-M. & Wen, D.-X., (2015). New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy. Materials Design, 74 108-118. https://doi.org/10.1016/j.matdes.2015.03.001
  • Liu, Y., Zhu, B., Wang, Y., Li, S. & Zhang, Y., (2020). Fast Solution Heat Treatment of High Strength Aluminum Alloy Sheets in Radiant Heating Furnace During Hot Stamping. International Journal of Lightweight Materials and Manufacture, 3 (1): 20-25. https://doi.org/10.1016/j.ijlmm.2019.11.004
  • Lu, J., Song, Y., Hua, L., Zheng, K. & Dai, D., (2018). Thermal Deformation Behavior and Processing Maps of 7075 Aluminum Alloy Sheet Based on Isothermal Uniaxial Tensile Tests. Journal of Alloys and Compounds, 767 (1): 856-869. https://doi.org/10.1016/j.jallcom.2018.07.173
  • Mao, C., Liu, C., Yu, L., Li, H. & Liu, Y., (2018). Mechanical Properties and Tensile Deformation Behavior of a Reduced Activated Ferritic-Martensitic (Rafm) Steel at Elevated Temperatures. Materials Science and Engineering: A, 725 (1): 283-289. https://doi.org/10.1016/j.msea.2018.03.119
  • Ozturk, F., Toros, S. & Kilic, S., (2009). Tensile and Spring-Back Behavior of Dp600 Advanced High Strength Steel at Warm Temperatures. Journal of Iron and Steel Research, International, 16 (6): 41-46. https://doi.org/10.1016/S1006-706X(10)60025-8
  • Ozturk, F., Toros, S. & Kilic, S. , (2010). Tensile Deformation Behavior of Aa5083-H111 at Cold and Warm Temperatures. International Journal of Materials Research, 101 (9): 1172-1179.
  • Paghandeh, M., Zarei-Hanzaki, A., Abedi, H. R., Vahidshad, Y., Kawałko, J., Dietrich, D. & lampke, T., (2021). Compressive/Tensile Deformation Behavior and the Correlated Microstructure Evolution of Ti–6al–4v Titanium Alloy at Warm Temperatures. Journal of Materials Research and Technology, 10 (1): 1291-1300. https://doi.org/10.1016/j.jmrt.2020.12.110
  • Pandre, S., Takalkar, P., Kotkunde, N., Kumar Singh, S. & Ul Haq, A., (2019). Influence of Temperatures and Strain Rates on Tensile Deformation Behaviour of Dp 590 Steel. Materials Today: Proceedings, 18 (1): 2603-2610. https://doi.org/10.1016/j.matpr.2019.07.119
  • Prakash, G., Singh, N. K. & Gupta, N. K., (2020). Deformation Behaviours of Al2014-T6 at Different Strain Rates and Temperatures. Structures, 26 (1): 193-203. https://doi.org/10.1016/j.istruc.2020.03.068
  • Puchi-Cabrera, E. S., Staia, M. H., Ochoa-Pérez, E., La Barbera-Sosa, J. G., Villalobos-Gutierrez, C. & Brenlla-Caires, A., (2011). Flow Stress and Ductility of Aa7075-T6 Aluminum Alloy at Low Deformation Temperatures. Materials Science and Engineering: A, 528 (3): 895-905. https://doi.org/10.1016/j.msea.2010.11.002
  • Shimadzu, 2021. Thermostatic Chambe. https://www.shimadzu.com/an/products/materials-testing/uni-ttm-system/tce-n300a/index.html (Erişim Tarihi: 01.07.2021).
  • Simonetto, E., Bertolini, R., Ghiotti, A. & Bruschi, S., (2020). Mechanical and Microstructural Behaviour of Aa7075 Aluminium Alloy for Sub-Zero Temperature Sheet Stamping Process. International Journal of Mechanical Sciences, 187 105919. https://doi.org/10.1016/j.ijmecsci.2020.105919
  • Su, M.-N. & Young, B., (2019). Material Properties of Normal and High Strength Aluminium Alloys at Elevated Temperatures. Thin-Walled Structures, 137 (1): 463-471. https://doi.org/10.1016/j.tws.2019.01.012
  • Tang, K., Zhang, Z., Tian, J., Wu, Y. & Jiang, F., (2021). Hot Deformation Behavior and Microstructural Evolution of Supersaturated Inconel 783 Superalloy. Journal of Alloys and Compounds, 860 (1): 158541. https://doi.org/10.1016/j.jallcom.2020.158541
  • Toros, S., Kilic, S. & Ozturk, F., (2011). The Effects of Material Thickness and Deformation Speed on Springback Behavior of Dp600 Steel. Advanced Materials Research, 264-265 (1): 636-645. 10.4028/www.scientific.net/AMR.264-265.636
  • Vilamosa, V., Clausen, A. H., Børvik, T., Holmedal, B. & Hopperstad, O. S., (2016). A Physically-Based Constitutive Model Applied to Aa6082 Aluminium Alloy at Large Strains, High Strain Rates and Elevated Temperatures. Materials Design, 103 (1): 391-405. https://doi.org/10.1016/j.matdes.2016.04.047
  • Xiao, W., Wang, B., Wu, Y. & Yang, X., (2018). Constitutive Modeling of Flow Behavior and Microstructure Evolution of Aa7075 in Hot Tensile Deformation. Materials Science and Engineering: A, 712 (1): 704-713. https://doi.org/10.1016/j.msea.2017.12.028
  • Xu, Z., Peng, L., Jain, M. K., Anderson, D. & Carsley, J., (2021). Local and Global Tensile Deformation Behavior of Aa7075 Sheet Material at 673ok and Different Strain Rates. International Journal of Mechanical Sciences, 195 (1): 106241. https://doi.org/10.1016/j.ijmecsci.2020.106241
  • Yao, K., Min, X., Emura, S. & Tsuchiya, K., (2019). Coupling Effect of Deformation Mode and Temperature on Tensile Properties in Twip Type Ti–Mo Alloy. Materials Science and Engineering: A, 766 (1): 138363. https://doi.org/10.1016/j.msea.2019.138363
  • Zang, M. C., Niu, H. Z., Zhang, H. R., Tan, H. & Zhang, D. L., (2021). Cryogenic Tensile Properties and Deformation Behavior of a Superhigh Strength Metastable Beta Titanium Alloy Ti–15mo–2al. Materials Science and Engineering: A, 817 (1): 141344. https://doi.org/10.1016/j.msea.2021.141344
  • Zhang, J.-Y., Jiang, P., Zhu, Z.-l., Chen, Q., Zhou, J. & Meng, Y., (2020). Tensile Properties and Strain Hardening Mechanism of Cr-Mn-Si-Ni Alloyed Ultra-Strength Steel at Different Temperatures and Strain Rates. Journal of Alloys and Compounds, 842 (1): 155856. https://doi.org/10.1016/j.jallcom.2020.155856
  • Zwick, 2021. Isı Kabinleri. https://www.zwickroell.com/tr/aksesuar/sicaklik-ve-klima/isi-kabinleri/ (Erişim Tarihi: 01.07.2021).

Sıcaklık ve Deformasyon Hızının Mekanik Özelliklere Etkisinin İncelenmesi

Year 2022, Volume: 14 Issue: 2, 406 - 419, 31.07.2022
https://doi.org/10.29137/umagd.987547

Abstract

Çekme testi, malzemenin kopana dek tek eksende çekildiği ve buradan elde edilen verilerden malzemeyi tanımamızı sağlayan en temel ve basit testlerden biridir. Malzemeleri tanırken onların farklı sıcaklık ve deformasyon hızları altındaki davranışları da önem arz etmektedir. Özellikle imalat sanayinde çok farklı üretim ve şekillendirme yöntemleri mevcut olup her birinin kendine has özellikleri mevcuttur. Örneğin, sıcak derin çekme işleminde, sıcak yapılan çekme deneyleri ile malzemenin mekanik özellikleri belirlenebilmektedir. Aynı zamanda sonlu elemanlar analiz programlarının gelişmesiyle beraber bu durum daha önemli hale gelmiştir. Çünkü aynı koşullar altında modelleme yapılması sonuçların doğruluğu üzerinde oldukça etkilidir. Bu çalışma kapsamında çelik, titanyum, alüminyum ve nikel alaşımlarında sıcaklık ve deformasyon hızının çekme özelliklerine etkisi araştırılmıştır. Yapılan incelemelerde, bu malzemeler için sıcaklık ve deformasyon hızı değişiminin, gerilme ve süneklik üzerinde etkisinin çok fazla olduğu görülmüştür.

References

  • Alsagabi, S., Alqahtani, M. & Alajlan, A., (2018). The Elevated Temperature Deformation of G115 Steel and the Associated Deformation Mechanism. International Journal of Advances in Materials Science and Engineering (IJAMSE), 7 (1): 1-7. https://doi.org/10.14810/ijamse.2018.7101
  • Altan, T. & Long, J., (2015). Forming Aluminum Alloys at Elevated Temperatures, Part 1, How Process Details Change for Warm and Hot Forming. Stamping Journal, 1 (1): 1-4.
  • Attar, H. R., Li, N. & Foster, A., (2021). A New Design Guideline Development Strategy for Aluminium Alloy Corners Formed through Cold and Hot Stamping Processes. Materials Design, 207 (1): 109856. https://doi.org/10.1016/j.matdes.2021.109856
  • Borek, W., Lis, M., Gołombek, K., Sakiewicz, P. & Piotrowski, K., (2019). Effect of Plastic Deformation Rate at Room Temperature on Structure and Mechanical Properties of High-Mn Austenitic Mn-Al-Si 25-3-3 Type Steel. Archives of Materials Science and Engineering, 96 (1): 22-31.
  • Dai, Q., Deng, Y., Jiang, H., Tang, J. & Chen, J., (2019). Hot Tensile Deformation Behaviors and a Phenomenological Aa5083 Aluminum Alloy Fracture Damage Model. Materials Science and Engineering: A, 766 (1): 138325. https://doi.org/10.1016/j.msea.2019.138325
  • Despax, L., Vidal, V., Delagnes, D., Dehmas, M., Matsumoto, H. & Velay, V., (2020). Influence of Strain Rate and Temperature on the Deformation Mechanisms of a Fine-Grained Ti-6al-4v Alloy. Materials Science and Engineering: A, 790 (1): 139718. https://doi.org/10.1016/j.msea.2020.139718
  • Gruber, B., Weißensteiner, I., Kremmer, T., Grabner, F., Falkinger, G., Schökel, A., Spieckermann, F., Schäublin, R., Uggowitzer, P. J. & Pogatscher, S., (2020). Mechanism of Low Temperature Deformation in Aluminium Alloys. Materials Science and Engineering: A, 795 (1): 139935. https://doi.org/10.1016/j.msea.2020.139935
  • Haitao, X., Dengke, W. & Kaihong, S., (2020). Effect of Deformation Temperature on Mechanical Properties and Microstructure of Twip Steel for Expansion Tube. High Temperature Materials and Processes, 39 (1): 63-73. doi:10.1515/htmp-2020-0020
  • Hao, F., Xiao, J., Feng, Y., Wang, Y., Ju, J., Du, Y., Wang, K., Xue, L. n., Nie, Z. & Tan, C., (2020). Tensile Deformation Behavior of a near-Α Titanium Alloy Ti-6al-2zr-1mo-1v under a Wide Temperature Range. Journal of Materials Research and Technology, 9 (3): 2818-2831. https://doi.org/10.1016/j.jmrt.2020.01.016
  • Jiang, Y.-Q., Lin, Y. C., Jiang, X.-Y., He, D.-G., Zhang, X.-Y. & Kotkunde, N., (2020). Hot Tensile Properties, Microstructure Evolution and Fracture Mechanisms of Ti-6al-4v Alloy with Initial Coarse Equiaxed Phases. Materials Characterization, 163 (1): 110272. https://doi.org/10.1016/j.matchar.2020.110272
  • Kilic, S., (2019). Experimental and Numerical Investigation of the Effect of Different Temperature and Deformation Speeds on Mechanical Properties and Springback Behaviour in Al-Zn-Mg-Cu Alloy. Mechanics, 25 (5): 406-412.
  • Kilic, S., Kacar, I. & Ozturk, F., (2019). New Trend in Aerospace Industry: Al-Li Based Alloys. Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (1): 275-296.
  • Kilic, S. & Ozturk, F., (2017). Evaluation of Formability under Different Deformation Modes for Twip900 Steel. Journal of Engineering Materials and Technology, 139 (3): 031001. 10.1115/1.4035621
  • Kilic, S., Ozturk, F. & Picu, C. R., (2018). Investigation of the Performance of Flow Models for Twip Steel. Journal of materials engineering and performance, 27 (8): 4364-4371. 10.1007/s11665-018-3504-6
  • Koga, N., Nameki, T., Umezawa, O., Tschan, V. & Weiss, K.-P., (2021). Tensile Properties and Deformation Behavior of Ferrite and Austenite Duplex Stainless Steel at Cryogenic Temperatures. Materials Science and Engineering: A, 801 (1): 140442. https://doi.org/10.1016/j.msea.2020.140442
  • Kori, P., Vadavadagi, B. H. & Khatirkar, R. K., (2020). Hot Deformation Characteristics of Ass-304 Austenitic Stainless Steel by Tensile Tests. Materials Today: Proceedings, 28 (1): 1895-1898. https://doi.org/10.1016/j.matpr.2020.05.303
  • Kundu, A., Field, D. P. & Chandra Chakraborti, P., (2020). Effect of Strain and Strain Rate on the Development of Deformation Heterogeneity During Tensile Deformation of a Solution Annealed 304 Ln Austenitic Stainless Steel: An Ebsd Study. Materials Science and Engineering: A, 773 (1): 138854. https://doi.org/10.1016/j.msea.2019.138854
  • Li, D., Feng, Y., Yin, Z., Shangguan, F., Wang, K., Liu, Q. & Hu, F., (2011). Prediction of Hot Deformation Behaviour of Fe–25mn–3si–3al Twip Steel. Materials Science and Engineering: A, 528 (28): 8084-8089. https://doi.org/10.1016/j.msea.2011.07.073
  • Li, Q., Ning, J., Chen, L., Hu, J. & Liu, Y., (2020). The Mechanical Response and Microstructural Evolution of 2195 Al–Li Alloy During Hot Tensile Deformation. Journal of Alloys and Compounds, 848 (1): 156515. https://doi.org/10.1016/j.jallcom.2020.156515
  • Lin, Y. C., Li, K.-K., Li, H.-B., Chen, J., Chen, X.-M. & Wen, D.-X., (2015). New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy. Materials Design, 74 108-118. https://doi.org/10.1016/j.matdes.2015.03.001
  • Liu, Y., Zhu, B., Wang, Y., Li, S. & Zhang, Y., (2020). Fast Solution Heat Treatment of High Strength Aluminum Alloy Sheets in Radiant Heating Furnace During Hot Stamping. International Journal of Lightweight Materials and Manufacture, 3 (1): 20-25. https://doi.org/10.1016/j.ijlmm.2019.11.004
  • Lu, J., Song, Y., Hua, L., Zheng, K. & Dai, D., (2018). Thermal Deformation Behavior and Processing Maps of 7075 Aluminum Alloy Sheet Based on Isothermal Uniaxial Tensile Tests. Journal of Alloys and Compounds, 767 (1): 856-869. https://doi.org/10.1016/j.jallcom.2018.07.173
  • Mao, C., Liu, C., Yu, L., Li, H. & Liu, Y., (2018). Mechanical Properties and Tensile Deformation Behavior of a Reduced Activated Ferritic-Martensitic (Rafm) Steel at Elevated Temperatures. Materials Science and Engineering: A, 725 (1): 283-289. https://doi.org/10.1016/j.msea.2018.03.119
  • Ozturk, F., Toros, S. & Kilic, S., (2009). Tensile and Spring-Back Behavior of Dp600 Advanced High Strength Steel at Warm Temperatures. Journal of Iron and Steel Research, International, 16 (6): 41-46. https://doi.org/10.1016/S1006-706X(10)60025-8
  • Ozturk, F., Toros, S. & Kilic, S. , (2010). Tensile Deformation Behavior of Aa5083-H111 at Cold and Warm Temperatures. International Journal of Materials Research, 101 (9): 1172-1179.
  • Paghandeh, M., Zarei-Hanzaki, A., Abedi, H. R., Vahidshad, Y., Kawałko, J., Dietrich, D. & lampke, T., (2021). Compressive/Tensile Deformation Behavior and the Correlated Microstructure Evolution of Ti–6al–4v Titanium Alloy at Warm Temperatures. Journal of Materials Research and Technology, 10 (1): 1291-1300. https://doi.org/10.1016/j.jmrt.2020.12.110
  • Pandre, S., Takalkar, P., Kotkunde, N., Kumar Singh, S. & Ul Haq, A., (2019). Influence of Temperatures and Strain Rates on Tensile Deformation Behaviour of Dp 590 Steel. Materials Today: Proceedings, 18 (1): 2603-2610. https://doi.org/10.1016/j.matpr.2019.07.119
  • Prakash, G., Singh, N. K. & Gupta, N. K., (2020). Deformation Behaviours of Al2014-T6 at Different Strain Rates and Temperatures. Structures, 26 (1): 193-203. https://doi.org/10.1016/j.istruc.2020.03.068
  • Puchi-Cabrera, E. S., Staia, M. H., Ochoa-Pérez, E., La Barbera-Sosa, J. G., Villalobos-Gutierrez, C. & Brenlla-Caires, A., (2011). Flow Stress and Ductility of Aa7075-T6 Aluminum Alloy at Low Deformation Temperatures. Materials Science and Engineering: A, 528 (3): 895-905. https://doi.org/10.1016/j.msea.2010.11.002
  • Shimadzu, 2021. Thermostatic Chambe. https://www.shimadzu.com/an/products/materials-testing/uni-ttm-system/tce-n300a/index.html (Erişim Tarihi: 01.07.2021).
  • Simonetto, E., Bertolini, R., Ghiotti, A. & Bruschi, S., (2020). Mechanical and Microstructural Behaviour of Aa7075 Aluminium Alloy for Sub-Zero Temperature Sheet Stamping Process. International Journal of Mechanical Sciences, 187 105919. https://doi.org/10.1016/j.ijmecsci.2020.105919
  • Su, M.-N. & Young, B., (2019). Material Properties of Normal and High Strength Aluminium Alloys at Elevated Temperatures. Thin-Walled Structures, 137 (1): 463-471. https://doi.org/10.1016/j.tws.2019.01.012
  • Tang, K., Zhang, Z., Tian, J., Wu, Y. & Jiang, F., (2021). Hot Deformation Behavior and Microstructural Evolution of Supersaturated Inconel 783 Superalloy. Journal of Alloys and Compounds, 860 (1): 158541. https://doi.org/10.1016/j.jallcom.2020.158541
  • Toros, S., Kilic, S. & Ozturk, F., (2011). The Effects of Material Thickness and Deformation Speed on Springback Behavior of Dp600 Steel. Advanced Materials Research, 264-265 (1): 636-645. 10.4028/www.scientific.net/AMR.264-265.636
  • Vilamosa, V., Clausen, A. H., Børvik, T., Holmedal, B. & Hopperstad, O. S., (2016). A Physically-Based Constitutive Model Applied to Aa6082 Aluminium Alloy at Large Strains, High Strain Rates and Elevated Temperatures. Materials Design, 103 (1): 391-405. https://doi.org/10.1016/j.matdes.2016.04.047
  • Xiao, W., Wang, B., Wu, Y. & Yang, X., (2018). Constitutive Modeling of Flow Behavior and Microstructure Evolution of Aa7075 in Hot Tensile Deformation. Materials Science and Engineering: A, 712 (1): 704-713. https://doi.org/10.1016/j.msea.2017.12.028
  • Xu, Z., Peng, L., Jain, M. K., Anderson, D. & Carsley, J., (2021). Local and Global Tensile Deformation Behavior of Aa7075 Sheet Material at 673ok and Different Strain Rates. International Journal of Mechanical Sciences, 195 (1): 106241. https://doi.org/10.1016/j.ijmecsci.2020.106241
  • Yao, K., Min, X., Emura, S. & Tsuchiya, K., (2019). Coupling Effect of Deformation Mode and Temperature on Tensile Properties in Twip Type Ti–Mo Alloy. Materials Science and Engineering: A, 766 (1): 138363. https://doi.org/10.1016/j.msea.2019.138363
  • Zang, M. C., Niu, H. Z., Zhang, H. R., Tan, H. & Zhang, D. L., (2021). Cryogenic Tensile Properties and Deformation Behavior of a Superhigh Strength Metastable Beta Titanium Alloy Ti–15mo–2al. Materials Science and Engineering: A, 817 (1): 141344. https://doi.org/10.1016/j.msea.2021.141344
  • Zhang, J.-Y., Jiang, P., Zhu, Z.-l., Chen, Q., Zhou, J. & Meng, Y., (2020). Tensile Properties and Strain Hardening Mechanism of Cr-Mn-Si-Ni Alloyed Ultra-Strength Steel at Different Temperatures and Strain Rates. Journal of Alloys and Compounds, 842 (1): 155856. https://doi.org/10.1016/j.jallcom.2020.155856
  • Zwick, 2021. Isı Kabinleri. https://www.zwickroell.com/tr/aksesuar/sicaklik-ve-klima/isi-kabinleri/ (Erişim Tarihi: 01.07.2021).
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Süleyman Kılıç 0000-0002-1681-9403

Mehmet Fatih Demirdöğen 0000-0002-0545-3733

Publication Date July 31, 2022
Submission Date August 27, 2021
Published in Issue Year 2022 Volume: 14 Issue: 2

Cite

APA Kılıç, S., & Demirdöğen, M. F. (2022). Sıcaklık ve Deformasyon Hızının Mekanik Özelliklere Etkisinin İncelenmesi. International Journal of Engineering Research and Development, 14(2), 406-419. https://doi.org/10.29137/umagd.987547

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.