Araştırma Makalesi
BibTex RIS Kaynak Göster

Etilen Oksit Sterilizasyonunun PEEK Bazlı Dental İmplantın Kimyasal Yapısı Üzerine Etkisi

Yıl 2023, Cilt: 15 Sayı: 1, 139 - 150, 31.01.2023
https://doi.org/10.29137/umagd.1148544

Öz

Polietereterketon (PEEK), kemik ve kıkırdak replasmanı için uygun mekanik özelliklere sahip biyouyumlu bir polimerdir. Bu nedenle titanyum bazlı metallere alternatif olarak tıpta ve diş hekimliğinde birçok potaniyel kullanıma sahiptir. Tıbbi cihaz yönetmeliğine göre implante edilebilir cihazlar yüksek risk sınıfında olması nedeniyle yıkama, dezenfeksiyon ve sterilizasyon süreçlerinden geçirilirler. Etilen oksit (EtO) sterilizasyonu özellikle PEEK bazlı polimerik implantların sterilizasyonu için kullanılan en yaygın ve etkili yöntemlerden biridir. Bununla birlikte, değişken sterilizasyon koşulları, polimerik malzemenin kimyasal yapısında, mekanik özelliklerini ve ömrünü etkileyen birtakım değişikliklere neden olabilir. Bu çalışmanın amacı, belirli koşullar altında EtO ile sterilize edilen PEEK bazlı dental implantların kimyasal yapısının değişip değişmediğini araştırmaktır. Kimyasal karakterizasyon çalışmaları ISO 10993-18:2020 standardında polimerik malzemeler için önerilen fourier transform kızılötesi spektroskopisi (FT-IR), diferansiyel taramalı kalorimetri (DSC), termogravimetrik analiz (TGA), CHNS elementel analiz ve gaz kromatografi-kütle spektrometrisi (GC-MS) teknikleri kullanılarak yürütülmüştür. Karakterizasyon sonuçları, etilen oksit sterilizasyonundan sonra PEEK materyalin moleküler yapısında, kristalinitesinde ve elementel bileşiminde önemli bir değişiklik olmadığını ortaya koymuştur.

Teşekkür

Sağladığı imkanlardan dolayı Kırıkkale Üniversitesi Bilimsel ve Teknolojik Araştırmalar Uygulama ve Araştırma Merkezi'ne (KUBTUAM) teşekkür ederim.

Kaynakça

  • Abruzzo, A., Fiorica, C., Palumbo, V. D., Altomare, R., Damiano, G., Gioviale, M. C., Tomasello, G., Licciardi, M., Palumbo, F. S., & Giammona, G. (2014). Using polymeric scaffolds for vascular tissue engineering. International Journal of Polymer Science, 2014.
  • Ahmad, A., Iqbal, T., Yasin, S., Hanif, R., Riaz, S., & Luckham, P. F. (2018). Stability of Amorphous PEEK in Organic Solvents. Journal of the Chemical Society of Pakistan, 40(4), 810-818.
  • Atkinson, J. R., Hay, J. N., & Jenkins, M. J. (2002). Enthalpic relaxation in semi-crystalline PEEK. Polymer, 43(3), 731-735. https://doi.org/https://doi.org/10.1016/S0032-3861(01)00668-1
  • Bozkaya, O., Arat, E., Gök, Z. G., Yiğitoğlu, M., & Vargel, İ. (2022). Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. European Polymer Journal, 111023.
  • Coates, J. (2000). Interpretation of infrared spectra, a Practical Approach in Encyclopedia of Analytical Chemistry. In (pp. p. 8): John Wiley & Sons.
  • Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011.
  • Díez-Pascual, A. M., Martínez, G., & Gómez, M. A. (2009). Synthesis and Characterization of Poly(ether ether ketone) Derivatives Obtained by Carbonyl Reduction. Macromolecules, 42(18), 6885-6892. https://doi.org/10.1021/ma901208e
  • DUZYER, S., HOCKENBERGER, A., Agah, U., Elif, E., & KAHVECİ, Z. ETİLEN OKSİT, OTOKLAV VE ULTRA VİYOLE STERİLİZASYONLARIININ PET ELEKTROÇEKİM LİFLERİN YÜZEY TOPOGRAFİSİ ÜZERİNE ETKİSİ. Uludağ University Journal of The Faculty of Engineering, 21(2), 201-218.
  • Farrar, D., & Gillson, R. (2002). Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight. Biomaterials, 23(18), 3905-3912.
  • Godara, A., Raabe, D., & Green, S. (2007). The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomaterialia, 3(2), 209-220.
  • Govindaraj, S., & Muthuraman, M. S. (2015). Systematic review on sterilization methods of implants and medical devices. Int J ChemTech Res, 8(2), 897-911.
  • Heider, D., Gomann, J., Junghann, B., & Kaiser, U. (2002). Kill kinetics study of Bacillus subtilis spores in ethylene oxide sterilisation processes. Zentr Steril, 10(3), 158-167.
  • Kulkarni, S. V., Nemade, A. C., & Sonawwanay, P. D. (2022). Recent Advances in Manufacturing Processes and Systems. Springer Singapore.
  • Kurtz, S. M. (2009). UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Academic Press.
  • Kurtz, S. M., & Devine, J. N. (2007). PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28(32), 4845-4869.
  • Li, H., Fouracre, R., Given, M., Banford, H., Wysocki, S., & Karolczak, S. (1999). The effects on polyetheretherketone and polyethersulfone of electron and/spl gamma/irradiation. IEEE transactions on dielectrics and electrical insulation, 6(3), 295-303.
  • Liu, Q., Li, C., Wei, L., Shen, M., Yao, Y., Hu, B., & Chen, Q. (2014). The phase structure, chain diffusion motion and local reorientation motion: 13C Solid-state NMR study on the highly-crystalline solid polymer electrolytes. Polymer, 55(21), 5454-5459.
  • Maekawa, M., Kanno, Z., Wada, T., Hongo, T., Doi, H., Hanawa, T., Ono, T., & Uo, M. (2015). Mechanical properties of orthodontic wires made of super engineering plastic. Dental Materials Journal, 2014-2202.
  • Mazlan, N., Hua, T. C., Ramli, N., Abdan, K., & Zin, M. H. (2022). Thermoplastics for Aircraft Cabin Applications. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 482-497). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00101-2
  • Mendes, G. C. C., Brandão, T. R. S., & Silva, C. L. M. (2007). Ethylene oxide sterilization of medical devices: A review. American Journal of Infection Control, 35(9), 574-581. https://doi.org/https://doi.org/10.1016/j.ajic.2006.10.014
  • Mensitieri, G., Apicella, A., Kenny, J., & Nicolais, L. (1989). Water sorption kinetics in poly (aryl ether ether ketone). Journal of Applied Polymer Science, 37(2), 381-392.
  • Mosley, G. A., Gillis, J. R., & Whitbourne, J. E. (2002). Calculating equivalent time for use in determining the lethality of EtO sterilization processes. Medical Device and Diagnostic Industry, 24(2), 54-63.
  • Naffakh, M., Ellis, G., Gómez, M., & Marco, C. (1999). Thermal decomposition of technological polymer blends 1. Poly (aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polymer degradation and stability, 66(3), 405-413.
  • Najeeb, S., Zafar, M. S., Khurshid, Z., & Siddiqui, F. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prosthodontic Research, 60(1), 12-19. https://doi.org/https://doi.org/10.1016/j.jpor.2015.10.001
  • Nizamuddin, S., Jamal, M., Gravina, R., & Giustozzi, F. (2020). Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. Journal of Cleaner Production, 266, 121988.
  • Ortega-Martínez, J., Farré-Lladós, M., Cano-Batalla, J., & Cabratosa-Termes, J. (2017). Polyetheretherketone (PEEK) as a medical and dental material. A literature review. Medical Research Archives, 5(4).
  • ÖZDEN, S., & DEMİR, H. (2020). Polieter eter keton (peek) diş hekimliğinde yükselen materyal. Necmettin Erbakan Üniversitesi Diş Hekimliği Dergisi, 2(2), 76-85.
  • Panayotov, I. V., Orti, V., Cuisinier, F., & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. Journal of Materials Science: Materials in Medicine, 27(7), 118. https://doi.org/10.1007/s10856-016-5731-4
  • Park, G. E., & Webster, T. J. (2005). A review of nanotechnology for the development of better orthopedic implants. Journal of Biomedical Nanotechnology, 1(1), 18-29.
  • Puppi, D., Chiellini, F., Piras, A. M., & Chiellini, E. (2010). Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35(4), 403-440.
  • Ramgobin, A., Fontaine, G., & Bourbigot, S. (2020). A case study of polyether ether ketone (I): investigating the thermal and fire behavior of a high-performance material. Polymers, 12(8), 1789.
  • Rial-Otero, R., Galesio, M., Capelo, J.-L., & Simal-Gándara, J. (2009). A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS. Chromatographia, 70(3), 339-348. https://doi.org/10.1365/s10337-009-1254-1
  • Ries, M. D., Weaver, K., & Beals, N. (1996). Safety and Efficacy of Ethylene Oxide Sterilized Polyethylene in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 331, 159-163. https://journals.lww.com/clinorthop/Fulltext/1996/10000/Safety_and_Efficacy_of_Ethylene_Oxide_Sterilized.22.aspx
  • Rutala, W., & Weber, D. (1999). Infection control: the role of disinfection and sterilization. Journal of Hospital Infection, 43, S43-S55.
  • Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly (lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677.
  • Sarot, J. R., Contar, C. M. M., Cruz, A. C. C. d., & de Souza Magini, R. (2010). Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. Journal of Materials Science: Materials in Medicine, 21(7), 2079-2085.
  • Savaris, M., Carvalho, G. A., Falavigna, A., Santos, V. d., & Brandalise, R. N. (2016). Chemical and thermal evaluation of commercial and medical Grade PEEK sterilization by Ethylene oxide. Materials Research, 19, 807-811.
  • Simonin, L., & Liao, H. (2000). Characterization of flame‐sprayed PEEK coatings by FTIR‐ATR, DSC and acoustic microscopy. Macromolecular Materials and Engineering, 283(1), 153-162.
  • Stojilovic, N., Dordevic, S. V., & Stojadinovic, S. (2017). Effects of clinical X-ray irradiation on UHMWPE films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 410, 139-143. https://doi.org/https://doi.org/10.1016/j.nimb.2017.08.023
  • Struik, L. C. E. (1966). Volume relaxation in polymers. Rheologica Acta, 5(4), 303-311. https://doi.org/10.1007/BF02009739
  • Talley, S. J., Yuan, X., & Moore, R. B. (2017). Thermoreversible Gelation of Poly (ether ether ketone). ACS Macro Letters, 6(3), 262-266.
  • Tipnis, N. P., & Burgess, D. J. (2018). Sterilization of implantable polymer-based medical devices: A review. International Journal of Pharmaceutics, 544(2), 455-460. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.12.003
  • Tsai, C., Perng, L., & Ling, Y. (1997). A study of thermal degradation of poly (aryl‐ether‐ether‐ketone) using stepwise pyrolysis/gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 11(18), 1987-1995.
  • Wang, H., Xu, L., Hu, J., Wang, M., & Wu, G. (2015). Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiation Physics and Chemistry, 115, 88-96. https://doi.org/https://doi.org/10.1016/j.radphyschem.2015.06.012
  • Xu, J., Zhang, Z., Xiong, X., & Zeng, H. (1992). A new solvent for poly (ether ether ketone). Polymer, 33(20), 4432-4434.
  • Yin, J., & Luan, S. (2016). Opportunities and challenges for the development of polymer-based biomaterials and medical devices. Regenerative biomaterials, 3(2), 129-135.
  • Zheng, Q., & Morgan, R. (1993). Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites. Journal of Composite Materials, 27(15), 1465-1478.

Effect of Ethylene Oxide Sterilization on the Chemical Structure of PEEK-based Dental Implant

Yıl 2023, Cilt: 15 Sayı: 1, 139 - 150, 31.01.2023
https://doi.org/10.29137/umagd.1148544

Öz

Polyetheretherketone (PEEK) is a biocompatible polymer with suitable mechanical properties for bone and cartilage replacement. Therefore, it has many potential uses in medicine and dentistry as an alternative to titanium-based metals. According to the medical device regulation, implantable devices are subjected to washing, disinfection and sterilization processes because they are in a high risk class. Ethylene oxide (EtO) sterilization is one of the most common and effective methods used especially for the sterilization of PEEK-based polymeric implants. However, variable sterilization conditions can cause a number of changes in the chemical structure of the polymeric material, affecting its mechanical properties and lifetime. The aim of this study is to investigate whether the chemical structure of PEEK-based dental implants sterilized with EtO under certain conditions changes. Chemical characterization studies were carried out using fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), CHNS elemental analysis and gas chromatography-mass spectrometry (GC-MS) techniques recommended for polymeric materials in the ISO 10993-18:2020 standard. The characterization results revealed that there was no significant change in the molecular structure, crystallinity and elemental composition of the PEEK material after ethylene oxide sterilization.

Kaynakça

  • Abruzzo, A., Fiorica, C., Palumbo, V. D., Altomare, R., Damiano, G., Gioviale, M. C., Tomasello, G., Licciardi, M., Palumbo, F. S., & Giammona, G. (2014). Using polymeric scaffolds for vascular tissue engineering. International Journal of Polymer Science, 2014.
  • Ahmad, A., Iqbal, T., Yasin, S., Hanif, R., Riaz, S., & Luckham, P. F. (2018). Stability of Amorphous PEEK in Organic Solvents. Journal of the Chemical Society of Pakistan, 40(4), 810-818.
  • Atkinson, J. R., Hay, J. N., & Jenkins, M. J. (2002). Enthalpic relaxation in semi-crystalline PEEK. Polymer, 43(3), 731-735. https://doi.org/https://doi.org/10.1016/S0032-3861(01)00668-1
  • Bozkaya, O., Arat, E., Gök, Z. G., Yiğitoğlu, M., & Vargel, İ. (2022). Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. European Polymer Journal, 111023.
  • Coates, J. (2000). Interpretation of infrared spectra, a Practical Approach in Encyclopedia of Analytical Chemistry. In (pp. p. 8): John Wiley & Sons.
  • Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 2011.
  • Díez-Pascual, A. M., Martínez, G., & Gómez, M. A. (2009). Synthesis and Characterization of Poly(ether ether ketone) Derivatives Obtained by Carbonyl Reduction. Macromolecules, 42(18), 6885-6892. https://doi.org/10.1021/ma901208e
  • DUZYER, S., HOCKENBERGER, A., Agah, U., Elif, E., & KAHVECİ, Z. ETİLEN OKSİT, OTOKLAV VE ULTRA VİYOLE STERİLİZASYONLARIININ PET ELEKTROÇEKİM LİFLERİN YÜZEY TOPOGRAFİSİ ÜZERİNE ETKİSİ. Uludağ University Journal of The Faculty of Engineering, 21(2), 201-218.
  • Farrar, D., & Gillson, R. (2002). Hydrolytic degradation of polyglyconate B: the relationship between degradation time, strength and molecular weight. Biomaterials, 23(18), 3905-3912.
  • Godara, A., Raabe, D., & Green, S. (2007). The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomaterialia, 3(2), 209-220.
  • Govindaraj, S., & Muthuraman, M. S. (2015). Systematic review on sterilization methods of implants and medical devices. Int J ChemTech Res, 8(2), 897-911.
  • Heider, D., Gomann, J., Junghann, B., & Kaiser, U. (2002). Kill kinetics study of Bacillus subtilis spores in ethylene oxide sterilisation processes. Zentr Steril, 10(3), 158-167.
  • Kulkarni, S. V., Nemade, A. C., & Sonawwanay, P. D. (2022). Recent Advances in Manufacturing Processes and Systems. Springer Singapore.
  • Kurtz, S. M. (2009). UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices. Academic Press.
  • Kurtz, S. M., & Devine, J. N. (2007). PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28(32), 4845-4869.
  • Li, H., Fouracre, R., Given, M., Banford, H., Wysocki, S., & Karolczak, S. (1999). The effects on polyetheretherketone and polyethersulfone of electron and/spl gamma/irradiation. IEEE transactions on dielectrics and electrical insulation, 6(3), 295-303.
  • Liu, Q., Li, C., Wei, L., Shen, M., Yao, Y., Hu, B., & Chen, Q. (2014). The phase structure, chain diffusion motion and local reorientation motion: 13C Solid-state NMR study on the highly-crystalline solid polymer electrolytes. Polymer, 55(21), 5454-5459.
  • Maekawa, M., Kanno, Z., Wada, T., Hongo, T., Doi, H., Hanawa, T., Ono, T., & Uo, M. (2015). Mechanical properties of orthodontic wires made of super engineering plastic. Dental Materials Journal, 2014-2202.
  • Mazlan, N., Hua, T. C., Ramli, N., Abdan, K., & Zin, M. H. (2022). Thermoplastics for Aircraft Cabin Applications. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 482-497). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00101-2
  • Mendes, G. C. C., Brandão, T. R. S., & Silva, C. L. M. (2007). Ethylene oxide sterilization of medical devices: A review. American Journal of Infection Control, 35(9), 574-581. https://doi.org/https://doi.org/10.1016/j.ajic.2006.10.014
  • Mensitieri, G., Apicella, A., Kenny, J., & Nicolais, L. (1989). Water sorption kinetics in poly (aryl ether ether ketone). Journal of Applied Polymer Science, 37(2), 381-392.
  • Mosley, G. A., Gillis, J. R., & Whitbourne, J. E. (2002). Calculating equivalent time for use in determining the lethality of EtO sterilization processes. Medical Device and Diagnostic Industry, 24(2), 54-63.
  • Naffakh, M., Ellis, G., Gómez, M., & Marco, C. (1999). Thermal decomposition of technological polymer blends 1. Poly (aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polymer degradation and stability, 66(3), 405-413.
  • Najeeb, S., Zafar, M. S., Khurshid, Z., & Siddiqui, F. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of Prosthodontic Research, 60(1), 12-19. https://doi.org/https://doi.org/10.1016/j.jpor.2015.10.001
  • Nizamuddin, S., Jamal, M., Gravina, R., & Giustozzi, F. (2020). Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen. Journal of Cleaner Production, 266, 121988.
  • Ortega-Martínez, J., Farré-Lladós, M., Cano-Batalla, J., & Cabratosa-Termes, J. (2017). Polyetheretherketone (PEEK) as a medical and dental material. A literature review. Medical Research Archives, 5(4).
  • ÖZDEN, S., & DEMİR, H. (2020). Polieter eter keton (peek) diş hekimliğinde yükselen materyal. Necmettin Erbakan Üniversitesi Diş Hekimliği Dergisi, 2(2), 76-85.
  • Panayotov, I. V., Orti, V., Cuisinier, F., & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. Journal of Materials Science: Materials in Medicine, 27(7), 118. https://doi.org/10.1007/s10856-016-5731-4
  • Park, G. E., & Webster, T. J. (2005). A review of nanotechnology for the development of better orthopedic implants. Journal of Biomedical Nanotechnology, 1(1), 18-29.
  • Puppi, D., Chiellini, F., Piras, A. M., & Chiellini, E. (2010). Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35(4), 403-440.
  • Ramgobin, A., Fontaine, G., & Bourbigot, S. (2020). A case study of polyether ether ketone (I): investigating the thermal and fire behavior of a high-performance material. Polymers, 12(8), 1789.
  • Rial-Otero, R., Galesio, M., Capelo, J.-L., & Simal-Gándara, J. (2009). A Review of Synthetic Polymer Characterization by Pyrolysis–GC–MS. Chromatographia, 70(3), 339-348. https://doi.org/10.1365/s10337-009-1254-1
  • Ries, M. D., Weaver, K., & Beals, N. (1996). Safety and Efficacy of Ethylene Oxide Sterilized Polyethylene in Total Knee Arthroplasty. Clinical Orthopaedics and Related Research®, 331, 159-163. https://journals.lww.com/clinorthop/Fulltext/1996/10000/Safety_and_Efficacy_of_Ethylene_Oxide_Sterilized.22.aspx
  • Rutala, W., & Weber, D. (1999). Infection control: the role of disinfection and sterilization. Journal of Hospital Infection, 43, S43-S55.
  • Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly (lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677.
  • Sarot, J. R., Contar, C. M. M., Cruz, A. C. C. d., & de Souza Magini, R. (2010). Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. Journal of Materials Science: Materials in Medicine, 21(7), 2079-2085.
  • Savaris, M., Carvalho, G. A., Falavigna, A., Santos, V. d., & Brandalise, R. N. (2016). Chemical and thermal evaluation of commercial and medical Grade PEEK sterilization by Ethylene oxide. Materials Research, 19, 807-811.
  • Simonin, L., & Liao, H. (2000). Characterization of flame‐sprayed PEEK coatings by FTIR‐ATR, DSC and acoustic microscopy. Macromolecular Materials and Engineering, 283(1), 153-162.
  • Stojilovic, N., Dordevic, S. V., & Stojadinovic, S. (2017). Effects of clinical X-ray irradiation on UHMWPE films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 410, 139-143. https://doi.org/https://doi.org/10.1016/j.nimb.2017.08.023
  • Struik, L. C. E. (1966). Volume relaxation in polymers. Rheologica Acta, 5(4), 303-311. https://doi.org/10.1007/BF02009739
  • Talley, S. J., Yuan, X., & Moore, R. B. (2017). Thermoreversible Gelation of Poly (ether ether ketone). ACS Macro Letters, 6(3), 262-266.
  • Tipnis, N. P., & Burgess, D. J. (2018). Sterilization of implantable polymer-based medical devices: A review. International Journal of Pharmaceutics, 544(2), 455-460. https://doi.org/https://doi.org/10.1016/j.ijpharm.2017.12.003
  • Tsai, C., Perng, L., & Ling, Y. (1997). A study of thermal degradation of poly (aryl‐ether‐ether‐ketone) using stepwise pyrolysis/gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 11(18), 1987-1995.
  • Wang, H., Xu, L., Hu, J., Wang, M., & Wu, G. (2015). Radiation-induced oxidation of ultra-high molecular weight polyethylene (UHMWPE) powder by gamma rays and electron beams: A clear dependence of dose rate. Radiation Physics and Chemistry, 115, 88-96. https://doi.org/https://doi.org/10.1016/j.radphyschem.2015.06.012
  • Xu, J., Zhang, Z., Xiong, X., & Zeng, H. (1992). A new solvent for poly (ether ether ketone). Polymer, 33(20), 4432-4434.
  • Yin, J., & Luan, S. (2016). Opportunities and challenges for the development of polymer-based biomaterials and medical devices. Regenerative biomaterials, 3(2), 129-135.
  • Zheng, Q., & Morgan, R. (1993). Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites. Journal of Composite Materials, 27(15), 1465-1478.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ogün Bozkaya 0000-0001-8381-8649

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 25 Temmuz 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 15 Sayı: 1

Kaynak Göster

APA Bozkaya, O. (2023). Etilen Oksit Sterilizasyonunun PEEK Bazlı Dental İmplantın Kimyasal Yapısı Üzerine Etkisi. International Journal of Engineering Research and Development, 15(1), 139-150. https://doi.org/10.29137/umagd.1148544
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.