Research Article
BibTex RIS Cite

Toz Metalurjisi Yöntemi ile Tane İnceltici Üretimi ve Döküm Performansının İncelenmesi

Year 2023, Volume: 15 Issue: 1, 151 - 163, 31.01.2023
https://doi.org/10.29137/umagd.1167854

Abstract

Alüminyum ve alaşımlarına uygulanan tane inceltme işlemi özellikle döküm alüminyum alaşımların mekanik ve dökülebilirlik özelliklerini iyileştirmede kullanılan bir işlemdir. Ticari olarak alüminyumun titanyum ve bor içeren halojenür tuzların ergitilmesi ile üretilen master alaşımlar kullanılmaktadır. Bu çalışmada toz metalürjisi yöntemi ile üretilen tane incelticilerin Etial 180 (LM2) alaşımının tane inceltme performansı üzerindeki etkileri incelenmiştir. Ticari olarak kullanılan Al5Ti1B ve Al8B master alaşımına alternatif olabilecek tane incelticiler toz metalürjisi yöntemi ile üretilmiş ve performansları karşılaştırılmıştır. Bu amaçla Al25Ti, Al25B, Al5Ti1B ve Al5Tİ5B bileşimlerine sahip dört farklı tane inceltici geliştirilmiş ve farklı sıcaklıklarda atmosfer altında sinterlenmiştir. Akabinde üretilen tane incelticilerin performansı Etial 180 alaşımı kullanılarak kokil kalıba gerçekleştirilen döküm işlemi ile incelenmiştir. Çalışma sonucu toz metalurjisi ile üretilen tane incelticilerin alaşımın tane boyutunu önemli oranda azalttığı ve ticari olarak kullanılan tane inceltici kadar performans sağladığı tespit edilmiştir. Toz metalürjisi yöntemi kullanılarak üretilen tane incelticiler ile döküm alaşımın tane boyutunu başlangıç duruma göre ~%85’e kadar azalttığı gözlemlenmiştir. Ayrıca toz metalürjisi yöntemi ile üretilen tane incelticilerin döküm parçanın sertliğini %10 ile %15 arasında artırdığı tespit edilmiştir.

Supporting Institution

Zonguldak Bülent Ecevit Üniversitesi

Project Number

2019-733386352019-73338635

Thanks

Bu çalışmayı finansal olarak destekleyen Zonguldak Bülent Ecevit Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü 2019-733386352019-73338635 nolu projesine teşekkürlerimizi sunarız.

References

  • ESER, U.A., (2019).Alümiyum ve Silisyum Alaşımlarında Bor İle Tane İnceltme.Yıldız Teknik Üniversitesi.
  • Sigworth, G.K., & T.A. Kuhn, (2007). GRAIN REFINEMENT OF ALUMINUM CASTING ALLOYS.
  • Teke, , M. Çolak, , M. Taş, & M. İpek, (2019). Modeling of the impact of initial mold temperature, Al5Ti1B and Al10Sr additions on the critical fraction of solid in die casting of aluminum alloys using fuzzy expert system. Acta Physica Polonica A, 135(5), 1105–1107.
  • Samuel, A.M., , S.S. Mohamed, , H.W. Doty, , S. Valtierra, & F.H. Samuel, (2018). Effect of melt temperature on the effectiveness of the grain refining in Al-Si castings. Advances in Materials Science and Engineering, 2018.
  • Davies, I.G., , J.M. Dennis, & A. Hellawell, (1970). The nucleation of aluminum grains in alloys of aluminum with titanium and boron. Metallurgical Transactions, 1(1), 275–280.
  • BAHADIR, A., (2021).Ötektik Alüminyum-Silisyum Alaşımının Mikroyapı ve Mekanik Özelliklerine Titanyum-Bor İlavesinin Etkisi.Karabük Üniversitesi.
  • Ferhat GÜL, (2014). AlSi10Mg Döküm Alaşımlarının Bazı Mekanik Özellikleri Üzerine İkincil Yaşlandırma İşleminin Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(1), 30–37.
  • ŞENEL, L., (2004).Al-Si döküm alaşımlarının sıkıştırma döküm yöntemi ile mikroyapı ve mekanik özelliklerinin geliştirilmesi.Gazi Üniversitesi.
  • Murty, B.S., , S.A. Kori, & M. Chakraborty, (2002). Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying.(1), 3–29.
  • Quested, T.E., , A.T. Dinsdale, & A.L. Greer, (2006). Thermodynamic evidence for a poisoning mechanism in the Al–Si–Ti system. Materials Science and Technology, 22(9), 1126–1134.
  • Qiu, D., , J.A. Taylor, , M.X. Zhang, & P.M. Kelly, (2007). A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys. Acta Materialia, 55(4), 1447–1456.
  • Çolak, M., (2020). TANE İNCELTİCİ ve MODİFİYE EDİCİ İLAVELİ ÖTEKTİK AL-Sİ ALAŞIMININ KUM KALIBA DÖKÜMÜNDE MODELLEME TEKNİKLERİ İLE KRİTİK KATI ORANININ BELİRLENMESİ. TURAN : Stratejik Arastirmalar Merkezi, 12(48), 541–548.
  • Bolzoni, L., & N. Hari Babu, (2020). On the grain refining efficacy of Ti-free hypoeutectic AlSi via AlTiB, AlB and AlNbB chemical inoculation. Journal of Alloys and Compounds, 817 152807.
  • Birol, Y., (2008). Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6. Journal of Alloys and Compounds, 458(1–2), 271–276.
  • Naglič, I., , A. Smolej, , M. Doberšek, & P. Mrvar, (2008). The influence of TiB2 particles on the effectiveness of Al–3Ti–0.15C grain refiner. Materials Characterization, 59(10), 1458–1465.
  • Wang, X., (2005). The formation of AlB2 in an Al–B master alloy. Journal of Alloys and Compounds, 403(1), 283–287.
  • Savaş, Ö., & R. Kayikci, (2013). A Taguchi optimisation for production of Al–B master alloys using boron oxide. Journal of Alloys and Compounds, 580 232–238.
  • Savaş, Ö., , R. Kayikci, & S. Köksal, (2012). Application of Taguchi Method to Investigate the Effect of Some Factors on In-Situ Formed Flake Structures of AL/ALB2 Composite. Advanced Composites Letters, 21(2), 096369351202100202.
  • Batalu, D., , G. Coşmeleaţǎ, & A. Aloman, (2006). Critical analysis of the Ti-Al phase diagrams. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 68(4), 77–90.
  • Batool, S.A., , A. Wadood, & M.A.U. Rehman, (2019). Comparison of aluminum based alloys reinforced with intermetallic developed by powder metallurgy and arc melting routes. Soldagem e Inspecao, 24 1–11.
  • Yuan, L., , J. Han, , J. Liu, & Z. Jiang, (2016). Mechanical properties and tribological behavior of aluminum matrix composites reinforced with in-situ AlB2 particles. Tribology International, 98 41–47.
  • Birol, Y., (2009). Al–Ti–B grain refiners via powder metallurgy processing of Al/K2TiF6/KBF4 powder blends. Journal of Alloys and Compounds, 480(2), 311–314.
  • Khaliq, A., (2015). Analysis of Boron Treatment using AlB2 and AlB12-based Alloys. Light Metals,(January),.
  • Gezer, B.T., , F. Toptan, , S. Daglilar, & I. Kerti, (2010). Production of Al–Ti–C grain refiners with the addition of elemental carbon. Materials & Design, 31 S30–S35.
  • Li, P., , E.G. Kandalova, , V.I. Nikitin, , A.R. Luts, , A.G. Makarenko, & Y. Zhang, (2003). Effect of fluxes on structure formation of SHS Al–Ti–B grain refiner. Materials Letters, 57(22), 3694–3698.
  • Peeratatsuwan, C., & T. Chowwanonthapunya, (2020). Investigation of the grain refining performance of Al-5Ti-1B master alloy on the recycling process of A356 alloy. Materialwissenschaft Und Werkstofftechnik, 51(10), 1346–1352.
  • Birol, Y., (2007). Production of Al–Ti–B grain refining master alloys from B2O3 and K2TiF6. Journal of Alloys and Compounds, 443(1), 94–98.
  • Başaranel, M., , N. Saklakoğlu, & S.G. İrizalp, (2015). ETIAL 180 ALÜMİNYUM ALAŞIMINA İLAVE EDİLEN Mg ve Sn ELEMENTLERİNİN İNTERMETALİK FAZLARA ETKİSİ - THE INFLUENCE OF Sn AND Mg CONTENTS ON THE INTERMETALLIC PHASES OF ETIAL 180 ALLOY. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 9(2), 17–24.
  • Başaranel, M., & N. Saklakoğlu, (2012). ESER MİKTARDA Mg ve Sn İLAVESİNİN ETİAL 180 ALÜMINYUM ALAŞIMINA ETKILERININ İNCELENMESİ. CBÜ Fen Bilimleri Dergisisi, 1(8), 61–65.
  • Çolak, M., & D. Dlşplnar, (2017). Taguchi Approach for Optimization of Parameters that Effect Grain Size of Cast A357 Alloy. Archives of Foundry Engineering, 17(4), 35–42.
  • Arslan, İ., , E. GAVGALI, & M. ÇOLAK, (2019). KUM KALIBA DÖKÜLEN FARKLI ALÜMİNYUM ALAŞIMLARININ DÖKÜMÜNDE Al5Ti1B VE Al10SR İLAVESİNİN MİKROYAPI ÖZELLİKLERE ETKİSİNİN İNCELENMESİ. Academic Platform Journal of Engineering and Science, 7(2), 237–244.
  • McCartney, D.G., (1989). Grain refining of aluminium and its alloys using inoculants. International Materials Reviews, 34(1), 247–260.
  • Çolak, M., & R. Kayıkcı, (2009). Alüminyum Dökümlerinde Tane İnceltme. SAÜ Fen Bilimleri Enstitüsü Dergisi, 13(1.Sayı), 11–17.
  • YAĞCI, T., , Ü. CÖCEN, , O. ÇULHA, & A. KORKMAZ, (2021). ALÜMİNYUM Döküm AlaşimlarinaDai̇r SonYillardaki̇Akademi̇k VeEndüstri̇yelGeli̇şmelere Genel Bakiş VeDeğerlendi̇rme. Uludağ University Journal of The Faculty of Engineering, 1191–1210.
  • Arslan, İ., , E. GAVGALI, & M. ÇOLAK, (2019). Kum Kalıba Dökülen Farklı Alüminyum Alaşımlarının Dökümünde Al5Ti1B ve AL10SR İlavesinin Mikroyapı Özelliklere Etkisinin İncelenmesi. Academic Platform Journal of Engineering and Science, 7(2), 237–244.
  • Cibula, A., (1972). Discussion of “the mechanisms of grain refinement in dilute aluminum alloys”*. Metallurgical Transactions, 3(3), 751–753.

Grain Refiners Production with Powder Metallurgy Method and Investigation of Casting Performance

Year 2023, Volume: 15 Issue: 1, 151 - 163, 31.01.2023
https://doi.org/10.29137/umagd.1167854

Abstract

Grain refinement applied to aluminum and its alloys is a process used to improve the mechanical and castability properties of cast aluminum alloys. Commercially, master alloys produced by melting aluminum halide salts containing titanium and boron are used. In this study, the effects of grain refiners produced by powder metallurgy method on grain refinement performance of Etial 180 (LM2) alloy were investigated. Grain refiners, which can be alternatives to commercially used Al5Ti1B and Al8B master alloys, were produced by powder metallurgy method and their performances were compared. For this purpose, four different grain refiners with Al25Ti, Al25B, Al5Ti1B and Al5Ti5B compositions were developed and sintered under atmosphere at different temperatures. Subsequently, the performance of the grain refiners produced was investigated by casting process in a permanent mold using Etial 180 alloy. As a result of the study, it has been determined that the grain refiners produced by powder metallurgy significantly reduce the grain size of the alloy and provide performance as much as the commercially used grain refiner. It has been observed that the grain refiners produced using the powder metallurgy method reduce the grain size of the cast alloy up to ~85% compared to the initial situation. In addition, it has been determined that the grain refiners produced by the powder metallurgy method increase the hardness of the cast part between 10% and 15%.

Project Number

2019-733386352019-73338635

References

  • ESER, U.A., (2019).Alümiyum ve Silisyum Alaşımlarında Bor İle Tane İnceltme.Yıldız Teknik Üniversitesi.
  • Sigworth, G.K., & T.A. Kuhn, (2007). GRAIN REFINEMENT OF ALUMINUM CASTING ALLOYS.
  • Teke, , M. Çolak, , M. Taş, & M. İpek, (2019). Modeling of the impact of initial mold temperature, Al5Ti1B and Al10Sr additions on the critical fraction of solid in die casting of aluminum alloys using fuzzy expert system. Acta Physica Polonica A, 135(5), 1105–1107.
  • Samuel, A.M., , S.S. Mohamed, , H.W. Doty, , S. Valtierra, & F.H. Samuel, (2018). Effect of melt temperature on the effectiveness of the grain refining in Al-Si castings. Advances in Materials Science and Engineering, 2018.
  • Davies, I.G., , J.M. Dennis, & A. Hellawell, (1970). The nucleation of aluminum grains in alloys of aluminum with titanium and boron. Metallurgical Transactions, 1(1), 275–280.
  • BAHADIR, A., (2021).Ötektik Alüminyum-Silisyum Alaşımının Mikroyapı ve Mekanik Özelliklerine Titanyum-Bor İlavesinin Etkisi.Karabük Üniversitesi.
  • Ferhat GÜL, (2014). AlSi10Mg Döküm Alaşımlarının Bazı Mekanik Özellikleri Üzerine İkincil Yaşlandırma İşleminin Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(1), 30–37.
  • ŞENEL, L., (2004).Al-Si döküm alaşımlarının sıkıştırma döküm yöntemi ile mikroyapı ve mekanik özelliklerinin geliştirilmesi.Gazi Üniversitesi.
  • Murty, B.S., , S.A. Kori, & M. Chakraborty, (2002). Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying.(1), 3–29.
  • Quested, T.E., , A.T. Dinsdale, & A.L. Greer, (2006). Thermodynamic evidence for a poisoning mechanism in the Al–Si–Ti system. Materials Science and Technology, 22(9), 1126–1134.
  • Qiu, D., , J.A. Taylor, , M.X. Zhang, & P.M. Kelly, (2007). A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys. Acta Materialia, 55(4), 1447–1456.
  • Çolak, M., (2020). TANE İNCELTİCİ ve MODİFİYE EDİCİ İLAVELİ ÖTEKTİK AL-Sİ ALAŞIMININ KUM KALIBA DÖKÜMÜNDE MODELLEME TEKNİKLERİ İLE KRİTİK KATI ORANININ BELİRLENMESİ. TURAN : Stratejik Arastirmalar Merkezi, 12(48), 541–548.
  • Bolzoni, L., & N. Hari Babu, (2020). On the grain refining efficacy of Ti-free hypoeutectic AlSi via AlTiB, AlB and AlNbB chemical inoculation. Journal of Alloys and Compounds, 817 152807.
  • Birol, Y., (2008). Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6. Journal of Alloys and Compounds, 458(1–2), 271–276.
  • Naglič, I., , A. Smolej, , M. Doberšek, & P. Mrvar, (2008). The influence of TiB2 particles on the effectiveness of Al–3Ti–0.15C grain refiner. Materials Characterization, 59(10), 1458–1465.
  • Wang, X., (2005). The formation of AlB2 in an Al–B master alloy. Journal of Alloys and Compounds, 403(1), 283–287.
  • Savaş, Ö., & R. Kayikci, (2013). A Taguchi optimisation for production of Al–B master alloys using boron oxide. Journal of Alloys and Compounds, 580 232–238.
  • Savaş, Ö., , R. Kayikci, & S. Köksal, (2012). Application of Taguchi Method to Investigate the Effect of Some Factors on In-Situ Formed Flake Structures of AL/ALB2 Composite. Advanced Composites Letters, 21(2), 096369351202100202.
  • Batalu, D., , G. Coşmeleaţǎ, & A. Aloman, (2006). Critical analysis of the Ti-Al phase diagrams. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 68(4), 77–90.
  • Batool, S.A., , A. Wadood, & M.A.U. Rehman, (2019). Comparison of aluminum based alloys reinforced with intermetallic developed by powder metallurgy and arc melting routes. Soldagem e Inspecao, 24 1–11.
  • Yuan, L., , J. Han, , J. Liu, & Z. Jiang, (2016). Mechanical properties and tribological behavior of aluminum matrix composites reinforced with in-situ AlB2 particles. Tribology International, 98 41–47.
  • Birol, Y., (2009). Al–Ti–B grain refiners via powder metallurgy processing of Al/K2TiF6/KBF4 powder blends. Journal of Alloys and Compounds, 480(2), 311–314.
  • Khaliq, A., (2015). Analysis of Boron Treatment using AlB2 and AlB12-based Alloys. Light Metals,(January),.
  • Gezer, B.T., , F. Toptan, , S. Daglilar, & I. Kerti, (2010). Production of Al–Ti–C grain refiners with the addition of elemental carbon. Materials & Design, 31 S30–S35.
  • Li, P., , E.G. Kandalova, , V.I. Nikitin, , A.R. Luts, , A.G. Makarenko, & Y. Zhang, (2003). Effect of fluxes on structure formation of SHS Al–Ti–B grain refiner. Materials Letters, 57(22), 3694–3698.
  • Peeratatsuwan, C., & T. Chowwanonthapunya, (2020). Investigation of the grain refining performance of Al-5Ti-1B master alloy on the recycling process of A356 alloy. Materialwissenschaft Und Werkstofftechnik, 51(10), 1346–1352.
  • Birol, Y., (2007). Production of Al–Ti–B grain refining master alloys from B2O3 and K2TiF6. Journal of Alloys and Compounds, 443(1), 94–98.
  • Başaranel, M., , N. Saklakoğlu, & S.G. İrizalp, (2015). ETIAL 180 ALÜMİNYUM ALAŞIMINA İLAVE EDİLEN Mg ve Sn ELEMENTLERİNİN İNTERMETALİK FAZLARA ETKİSİ - THE INFLUENCE OF Sn AND Mg CONTENTS ON THE INTERMETALLIC PHASES OF ETIAL 180 ALLOY. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 9(2), 17–24.
  • Başaranel, M., & N. Saklakoğlu, (2012). ESER MİKTARDA Mg ve Sn İLAVESİNİN ETİAL 180 ALÜMINYUM ALAŞIMINA ETKILERININ İNCELENMESİ. CBÜ Fen Bilimleri Dergisisi, 1(8), 61–65.
  • Çolak, M., & D. Dlşplnar, (2017). Taguchi Approach for Optimization of Parameters that Effect Grain Size of Cast A357 Alloy. Archives of Foundry Engineering, 17(4), 35–42.
  • Arslan, İ., , E. GAVGALI, & M. ÇOLAK, (2019). KUM KALIBA DÖKÜLEN FARKLI ALÜMİNYUM ALAŞIMLARININ DÖKÜMÜNDE Al5Ti1B VE Al10SR İLAVESİNİN MİKROYAPI ÖZELLİKLERE ETKİSİNİN İNCELENMESİ. Academic Platform Journal of Engineering and Science, 7(2), 237–244.
  • McCartney, D.G., (1989). Grain refining of aluminium and its alloys using inoculants. International Materials Reviews, 34(1), 247–260.
  • Çolak, M., & R. Kayıkcı, (2009). Alüminyum Dökümlerinde Tane İnceltme. SAÜ Fen Bilimleri Enstitüsü Dergisi, 13(1.Sayı), 11–17.
  • YAĞCI, T., , Ü. CÖCEN, , O. ÇULHA, & A. KORKMAZ, (2021). ALÜMİNYUM Döküm AlaşimlarinaDai̇r SonYillardaki̇Akademi̇k VeEndüstri̇yelGeli̇şmelere Genel Bakiş VeDeğerlendi̇rme. Uludağ University Journal of The Faculty of Engineering, 1191–1210.
  • Arslan, İ., , E. GAVGALI, & M. ÇOLAK, (2019). Kum Kalıba Dökülen Farklı Alüminyum Alaşımlarının Dökümünde Al5Ti1B ve AL10SR İlavesinin Mikroyapı Özelliklere Etkisinin İncelenmesi. Academic Platform Journal of Engineering and Science, 7(2), 237–244.
  • Cibula, A., (1972). Discussion of “the mechanisms of grain refinement in dilute aluminum alloys”*. Metallurgical Transactions, 3(3), 751–753.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Ramazan Can 0000-0002-5344-951X

Engin Kocaman 0000-0001-5617-3064

Nazım Kunduracı 0000-0002-0687-3860

Can Kurnaz 0000-0002-0172-4196

Project Number 2019-733386352019-73338635
Publication Date January 31, 2023
Submission Date August 28, 2022
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Can, R., Kocaman, E., Kunduracı, N., Kurnaz, C. (2023). Toz Metalurjisi Yöntemi ile Tane İnceltici Üretimi ve Döküm Performansının İncelenmesi. International Journal of Engineering Research and Development, 15(1), 151-163. https://doi.org/10.29137/umagd.1167854

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.