Research Article
BibTex RIS Cite

Determination of The Static Friction Coefficient of Some Materials Used for Anti-slip Safety with ANOVA

Year 2023, Volume: 15 Issue: 1, 172 - 185, 31.01.2023
https://doi.org/10.29137/umagd.1182843

Abstract

The surface conditions of ground surface coatings, which are widely used in working environments exposed to various pollutants, were evaluated from a safety perspective. In this work, static and dynamic friction coefficients and safe angle of inclination between some floor coverings exposed to different pollutants for various reasons and some shoe sole materials that are widely used in working environments were determined. The interaction between soil, floor, and surface contaminations were evaluated statistically. In particular, the ground surface contaminated with contaminants such as water and surface cleaners, which significantly reduce the security of the floor is studied. ANOVA results showed that the floor covering, shoe sole samples, and floor contaminants were significant for each variable of the friction coefficient (μ) (p <0.05). It was determined that the correlation between two factors and three factors between a floor covering, shoe sole samples, and floor surface contaminant conditions significantly affects the friction coefficient (μ). Seven floor samples used in the study were evaluated in terms of safety classification and the results ranking from the highest to the lowest were "Granite ceramic with a glossy surface", "PVC linoleum coating", "Laminated wood parquet", "Matte surface ceramic", "Rough surfaced ceramic", "Matte, rough, non-slip, fireproof ceramic, "Natural granite stone (processed)". When the effect of floor samples on the static friction coefficient is examined, safe ones according to the DIN 51097 standards for all working areas; it has been determined that "PVC linoleum coating" (X̄ = 0.52), "Laminated wooden parquet" (X̄ = 0.48), "Granite ceramic with a glossy surface" (X̄ = 0.46).

References

  • Bagheri, Z.S., Beltran, J.D., Holyoke, P., Dutta, T., 2021. Reducing fall risk for home care workers with slip resistant winter footwear. Appl. Ergon. 90, 103230. https://doi.org/10.1016/j.apergo.2020.103230
  • Chang, W.R., Grönqvist, R., Leclercq, S., Myung, R., Makkonen, L., Strandberg, L., Brungraber, R.J., Mattke, U., Thorpe, S.C., 2001. The role of friction in the measurement of slipperiness, Part 1: Friction mechanisms and definition of test conditions, in: Ergonomics. Taylor & Francis Group , pp. 1217–1232. https://doi.org/10.1080/00140130110085574
  • ÇOŞKUN, G., SARIIŞIK, G., 2017. Slip Safety Risk Analysis of Surface Properties by Determining Coefficients of Friction (COF) of Natural Stones. Cumhur. Sci. J. 38, 219–219. https://doi.org/10.17776/cumuscij.285917
  • Çoşkun, G., Sarıışık, G., Sarıışık, A., 2019. Slip safety risk analysis of surface properties using the coefficients of friction of rocks. Int. J. Occup. Saf. Ergon. 25, 443–457. https://doi.org/10.1080/10803548.2017.1395594
  • Gao, C., Abeysekera, J., 2002. The assessment of the integration of slip resistance, thermal insulation and wearability of footwear on icy surfaces, in: Safety Science. Elsevier, pp. 613–624. https://doi.org/10.1016/S0925-7535(01)00062-5
  • Grönqvist, R., Hirvonen, M., 1995. Slipperiness of footwear and mechanisms of walking friction on icy surfaces. Int. J. Ind. Ergon. 16, 191–200. https://doi.org/10.1016/0169-8141(94)00095-K
  • James, D.I., 1999. The theory behind the DIN ramp tests. Polym. Test. 18, 3–10. https://doi.org/10.1016/S0142-9418(98)00061-0
  • Leclercq, S., 1999. The prevention of slipping accidents: A review and discussion of work related to the methodology of measuring slip resistance. Saf. Sci. https://doi.org/10.1016/S0925-7535(98)00064-2
  • Li, K.W., Meng, F., Zhang, W., 2014. Friction between footwear and floor covered with solid particles under dry and wet conditions. Int. J. Occup. Saf. Ergon. 20, 43–53. https://doi.org/10.1080/10803548.2014.11077027
  • Li, K.W., Yu, R., Zhang, W., 2011. Roughness and slipperiness of floor surface: Tactile sensation and perception. Saf. Sci. 49, 508–512. https://doi.org/10.1016/j.ssci.2010.11.010
  • Liu, L., Li, K.W., Lee, Y.H., Chen, C.C., Chen, C.Y., 2010. Friction measurements on “anti-slip” floors under shoe sole, contamination, and inclination conditions. Saf. Sci. 48, 1321–1326. https://doi.org/10.1016/j.ssci.2010.04.014
  • Mai, W.T., Li, K.W., Chen, C.C., 2016. An analysis of floor roughness & slip resistance of floors, in: IEEE International Conference on Industrial Engineering and Engineering Management. IEEE Computer Society, pp. 329–332. https://doi.org/10.1109/IEEM.2015.7385662
  • McGorry, R.W., DiDomenico, A., Chang, C.C., 2007. The use of a heel-mounted accelerometer as an adjunct measure of slip distance. Appl. Ergon. 38, 369–376. https://doi.org/10.1016/j.apergo.2006.03.013
  • McVay, E.J., Redfern b, M.S., 1994. Rampway safety: Foot forces as a function of rampway angle. Am. Ind. Hyg. Assoc. J. 55, 626–634. https://doi.org/10.1080/15428119491018718
  • Yu, R., Li, K.W., 2012. International Journal of Injury Control and Safety Promotion A field assessment of floor slipperiness in a student cafeteria A field assessment of floor slipperiness in a student cafeteria. https://doi.org/10.1080/17457300.2012.686920

Kaymazlık Güvenliği İçin Kullanılan Bazı Malzemelerin Statik Sürtünme Katsayılarının ANOVA ile Belirlenmesi

Year 2023, Volume: 15 Issue: 1, 172 - 185, 31.01.2023
https://doi.org/10.29137/umagd.1182843

Abstract

Çeşitli kirleticilere maruz kalan çalışma ortamlarında yaygın olarak kullanılan zemin yüzey kaplamalarının yüzey koşulları güvenlik açısından değerlendirilmiştir. Çeşitli sebepler ve çalışma ortamlarında yaygın olarak kullanılan bazı ayakkabı taban malzemeleri belirlenmiştir. Toprak-zemin etkileşimi , ve yüzey kontaminasyonları istatistiksel olarak değerlendirildi, zeminin güvenliği araştırıldı. ANOVA sonuçları, zemin kaplaması, ayakkabı tabanı numuneleri ve zemin kirleticilerinin sürtünme katsayısının (μ) her bir değişkeni için önemli olduğunu gösterdi (p <0.05). Zemin kaplaması, ayakkabı tabanı örnekleri ve zemin yüzeyi kirliliği arasında iki faktör ve üç faktör arasındaki korelasyonun olduğu belirlendi. Doğal koşullar sürtünme katsayısını (μ) önemli ölçüde etkiler. Çalışmada kullanılan yedi zemin numunesi güvenlik sınıflandırması açısından değerlendirilmiş ve en yüksekten en düşüğe doğru sıralanan sonuçlar "Parlak yüzeyli granit seramik", "PVC linolyum kaplama", "Lamine ahşap parke", "Mat yüzey seramik", "Pürüzlü yüzey seramik", "Mat, pürüzlü, kaymaz, yanmaz seramik, "Doğal granit taş (işlenmiş)" olmuştur. DIN'e göre güvenli olanlar tüm çalışma alanları için 51097 standartlarında; "PVC linolyum kaplama" (X̄ = 0.52), "Lamine ahşap parke" (X̄ = 0.48), "Parlak yüzeyli granit seramik" (X̄ = 0.46) olduğu belirlenmiştir.

References

  • Bagheri, Z.S., Beltran, J.D., Holyoke, P., Dutta, T., 2021. Reducing fall risk for home care workers with slip resistant winter footwear. Appl. Ergon. 90, 103230. https://doi.org/10.1016/j.apergo.2020.103230
  • Chang, W.R., Grönqvist, R., Leclercq, S., Myung, R., Makkonen, L., Strandberg, L., Brungraber, R.J., Mattke, U., Thorpe, S.C., 2001. The role of friction in the measurement of slipperiness, Part 1: Friction mechanisms and definition of test conditions, in: Ergonomics. Taylor & Francis Group , pp. 1217–1232. https://doi.org/10.1080/00140130110085574
  • ÇOŞKUN, G., SARIIŞIK, G., 2017. Slip Safety Risk Analysis of Surface Properties by Determining Coefficients of Friction (COF) of Natural Stones. Cumhur. Sci. J. 38, 219–219. https://doi.org/10.17776/cumuscij.285917
  • Çoşkun, G., Sarıışık, G., Sarıışık, A., 2019. Slip safety risk analysis of surface properties using the coefficients of friction of rocks. Int. J. Occup. Saf. Ergon. 25, 443–457. https://doi.org/10.1080/10803548.2017.1395594
  • Gao, C., Abeysekera, J., 2002. The assessment of the integration of slip resistance, thermal insulation and wearability of footwear on icy surfaces, in: Safety Science. Elsevier, pp. 613–624. https://doi.org/10.1016/S0925-7535(01)00062-5
  • Grönqvist, R., Hirvonen, M., 1995. Slipperiness of footwear and mechanisms of walking friction on icy surfaces. Int. J. Ind. Ergon. 16, 191–200. https://doi.org/10.1016/0169-8141(94)00095-K
  • James, D.I., 1999. The theory behind the DIN ramp tests. Polym. Test. 18, 3–10. https://doi.org/10.1016/S0142-9418(98)00061-0
  • Leclercq, S., 1999. The prevention of slipping accidents: A review and discussion of work related to the methodology of measuring slip resistance. Saf. Sci. https://doi.org/10.1016/S0925-7535(98)00064-2
  • Li, K.W., Meng, F., Zhang, W., 2014. Friction between footwear and floor covered with solid particles under dry and wet conditions. Int. J. Occup. Saf. Ergon. 20, 43–53. https://doi.org/10.1080/10803548.2014.11077027
  • Li, K.W., Yu, R., Zhang, W., 2011. Roughness and slipperiness of floor surface: Tactile sensation and perception. Saf. Sci. 49, 508–512. https://doi.org/10.1016/j.ssci.2010.11.010
  • Liu, L., Li, K.W., Lee, Y.H., Chen, C.C., Chen, C.Y., 2010. Friction measurements on “anti-slip” floors under shoe sole, contamination, and inclination conditions. Saf. Sci. 48, 1321–1326. https://doi.org/10.1016/j.ssci.2010.04.014
  • Mai, W.T., Li, K.W., Chen, C.C., 2016. An analysis of floor roughness & slip resistance of floors, in: IEEE International Conference on Industrial Engineering and Engineering Management. IEEE Computer Society, pp. 329–332. https://doi.org/10.1109/IEEM.2015.7385662
  • McGorry, R.W., DiDomenico, A., Chang, C.C., 2007. The use of a heel-mounted accelerometer as an adjunct measure of slip distance. Appl. Ergon. 38, 369–376. https://doi.org/10.1016/j.apergo.2006.03.013
  • McVay, E.J., Redfern b, M.S., 1994. Rampway safety: Foot forces as a function of rampway angle. Am. Ind. Hyg. Assoc. J. 55, 626–634. https://doi.org/10.1080/15428119491018718
  • Yu, R., Li, K.W., 2012. International Journal of Injury Control and Safety Promotion A field assessment of floor slipperiness in a student cafeteria A field assessment of floor slipperiness in a student cafeteria. https://doi.org/10.1080/17457300.2012.686920
There are 15 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Articles
Authors

Murat Diker 0000-0003-3746-2949

Bülent Çakmak 0000-0002-3587-0933

Engin Ergül 0000-0003-3347-5400

Publication Date January 31, 2023
Submission Date October 1, 2022
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Diker, M., Çakmak, B., & Ergül, E. (2023). Determination of The Static Friction Coefficient of Some Materials Used for Anti-slip Safety with ANOVA. International Journal of Engineering Research and Development, 15(1), 172-185. https://doi.org/10.29137/umagd.1182843

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.