Behaviour of Composite Buildings Designed with TBDY 2018 in Main and Aftershocks
Year 2023,
Volume: 15 Issue: 2, 416 - 428, 14.07.2023
Serkan Etli
,
Melek Akgül
Abstract
Within the scope of the study, the designs of the structures consisting of 5, 10, 15 and 20 story moment resisting composite frames were carried out for TBDY 2018 and ZA group soils. The behavior of the designed structures was evaluated by using dynamic analysis in the time history domain. The earthquakes used were selected in series consisting of the main earthquake and aftershocks. The results obtained were evaluated in terms of roof displacements, base shear coefficients, interstory drift and base accelerations. The structures examined within the scope of the study show excellent behavior under the influence of the main and aftershocks.
References
- Akgül, M., Doğan, O., Etli, S. (2020). Investigation of Mechanical Properties of Granulated Waste Rubber Aggregates Substituted Self-Compacting Concrete Mortar Produced with Different Cement. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 12(2), 787-798. https://doi.org/10.29137/umagd.734614
- ASCE-41-17. (2017). Seismic rehabilitation of existing buildings. ASCE Standard, 41–6. https://doi.org/10.1201/9781439804810-c7
- ATC-58-2. (2017). ATC-58-2: Probabilistic Performance-based Seismic Assessment and Design Guidelines. SEAOC Convention Proceedings, 1–10.
- Castro, J. M., Elghazouli, A. Y., Izzuddin, B. A. (2007). Assessment of effective slab widths in composite beams. Journal of Constructional Steel Research, 63(10), 1317–1327. https://doi.org/10.1016/j.jcsr.2006.11.018
- Castro, J.M., Elghazouli, A.Y., Izzuddin, B.A., (2008). Performance assessment of composite moment-resisting frames. 14th World Conference on Earthquake Engineering. Beijing, China.
- Cemalgil, S., Etli, S. (2020). Effects of Specimen Size on The Compressive Strength of Rubber Modified Self Compacting Concrete. International Journal of Pure and Applied Sciences, 6(2), 118-129. https://doi.org/10.29132/ijpas.789480
- Coburn, A., Spence, R., (2002). Earthquake Protection, John Wiley&Sons, England.
- Doğan, O., Kalaylı, M.A. (2019). Binalarda Yükseklik/Genişlik Oranı Ve Zemin Yatak Katsayısına Bağlı Devrilme Analizi. Gazi Mühendislik Bilimleri Dergisi, 5 (3), 300-314.
- Elghazouli, A. Y. Y., Castro, J. M. M., Izzuddin, B. A. A. (2008). Seismic performance of composite moment-resisting frames. Engineering Structures, 30(7), 1802-1819. https://doi.org/10.1016/j.engstruct.2007.12.004
- El-Metwally, S. E., Sheta, A. M. (2017). Performance Based Design of Steel Frames via Practical Advanced Analysis. 2017 International Annual Conference of the American Society for Engineering Management.
- EN 1993-1-1. (2002). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. CEN, 3(BS EN 1993-1- 1:2005). https://doi.org/10.1017/CBO9781107415324.004
- EN 1994-1-1. (2004). Eurocode 4: Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings. European Committee for Standardization, 3(February), 33–38. https://doi.org/10.1002/14651858.CD009305.pub2
- EN 1998-1-1. (2004). Eurocode 8 :Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Normalization, Brussels, 2005. https://doi.org/[Authority: The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]
- EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures - Part 1–1: General rules and rules for buildings. European Committee for Standardization, 1(Brussels, Belgium), 225. https://doi.org/978 0 580 73752 7
- Etli, S. (2021). Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences, 7(3), 526-536. https://doi.org/10.29132/ijpas.991166
- Etli, S., Güneyisi, E. M. (2020). Seismic performance evaluation of regular and irregular composite moment resisting frames. Latin American Journal of Solids and Structures, 17(7), 1-22. https://doi.org/10.1590/1679-78255969
- Etli, S., Güneyisi, E. M. (2021). Assessment of Seismic Behavior Factor of Code-Designed Steel–Concrete Composite Buildings. Arabian Journal for Science and Engineering, 46(5), 4271-4292. https://doi.org/10.1007/s13369-020-04913-9
- Etli, S., Güneyisi, E. M. (2022). Effect of nonlinear modeling approaches used for composite elements on seismic behavior of composite framed buildings. Sadhana - Academy Proceedings in Engineering Sciences, 47(2). https://doi.org/10.1007/s12046-022- 01871-w
- Etli, S., (2022). Parametrıc Analysıs Of The Performance Of Steel-Concrete Composıte Structures Desıgned Wıth TBDY 2018. International Journal of Innovative Engineering Applications, 6(1), https://doi.org/10.46460/ijiea.1029942
- Etli, S., Cemalgil, S., Onat, O. (2018). Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences, 4(1), 10-22. https://doi.org/10.29132/ijpas.341413
- FEMA-750. (2009). Nehrp Guidelines for the Seismic Rehabilitation of Buildings. NEHRP Seismic Design Technical Brief, 2, 37. http://www.nehrp.nist.gov/pdf/nistgcr9-917-3.pdf
- Ferraioli, M., Lavino, A., Mandara, A., (2014). Behaviour factor of code-designed steel moment-resisting frames. International Journal of Steel Structures 14,243-254.
- Goda, K., Salami, M. R. (2014). Inelastic seismic demand estimation of wood-frame houses subjected to mainshock-aftershock sequences. Bulletin of Earthquake Engineering, 12(2), 855–874. https://doi.org/10.1007/s10518-013-9534-4
- Hatzigeorgiou, G. D., Liolios, A. A. (2010). Nonlinear behaviour of RC frames under repeated strong ground motions. Soil Dynamics and Earthquake Engineering, 30(10), 1010–1025. https://doi.org/10.1016/j.soildyn.2010.04.013
- Hauke, B. (2008). Economic Application of Composite Beams With Moderate High Strength Materials. In 5th European Conference on Steel and Composite Structures, September, 3-5, September 2008, Graz, Austria
- Hosseinpour, F., Abdelnaby, A. E. (2017). Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures. Soil Dynamics and Earthquake Engineering, 92, 706-725. https://doi.org/10.1016/j.soildyn.2016.11.006
- Jalayer, F., Ebrahimian, H. (2017). Seismic risk assessment considering cumulative damage due to aftershocks. Earthquake Engineering and Structural Dynamics, 46(3), 369-389. https://doi.org/10.1002/eqe.2792
- Jalayer, F., Asprone, D., Prota, A., Manfredi, G. (2011). A decision support system for post-earthquake reliability assessment of structures subjected to aftershocks: An application to L’Aquila earthquake, 2009. Bulletin of Earthquake Engineering, 9(4), 997- 1014. https://doi.org/10.1007/s10518-010-9230-6
- Jamnani, H. H., Amiri, J. V., Rajabnejad, H. (2018). Energy distribution in RC shear wall-frame structures subject to repeated earthquakes. Soil Dynamics and Earthquake Engineering, 107, 116-128. https://doi.org/10.1016/j.soildyn.2018.01.010
- Li, Q., Ellingwood, B. R. (2007). Performance evaluation and damage assessment of steel frame buildings under main shockaftershock earthquake sequences. Earthquake Engineering and Structural Dynamics, 36(3), 405 427. https://doi.org/10.1002/eqe.667
- Papaloizou, L., Polycarpou, P., Komodromos, P., Hatzigeorgiou, G. D., Beskos, D. E. (2016). Two-dimensional numerical investigation of the effects of multiple sequential earthquake excitations on ancient multidrum columns. Earthquake and Structures, 10(3), 495-521. https://doi.org/10.12989/eas.2016.10.3.495
- PEER. (2014). Pacific Earthquake Engineering Research Center (PEER). Pacific Earthquake Engineering Research Center. https://ngawest2.berkeley.edu
- Pirooz, R. M., Habashi, S., Massumi, A. (2021). Required time gap between mainshock and aftershock for dynamic analysis of structures. Bulletin of Earthquake Engineering, 19(6), 2643-2670. https://doi.org/10.1007/s10518-021 01087-z
- Plumier, A., Doneux, C., Sanchez-Ricart L., Agatino, R., Plumier, C., Elnashai, A.S.E., Tsujii, M., Pinho, R., Bouwkamp, J., Parung, H., Broderick, B., Elghazouli, A., Cosenza, E., Manfredi, G. (2001). Seismic Behaviour and Design of Composite Steel Concrete Structures. Ecoest & Icons, Report No, 198. https://doi.org/10.13140/2.1.1951.1361
- Raghunandan, M, Liel, A. B., Ryu, H., Luco, N., Uma, S. R. (2012). Aftershock Fragility Curves and Tagging Assessments for a Mainshock-Damaged Building. In Proceedings of the 15th World Conference on Earthquake Engineering - WCEE, 10.
- Raghunandan, Meera, Liel, A. B., Luco, N. (2015). Aftershock collapse vulnerability assessment of reinforced concrete frame structures. Earthquake Engineering and Structural Dynamics, 44(3), 419-439. https://doi.org/10.1002/eqe.2478
- Ruiz-García, J., Yaghmaei-Sabegh, S., Bojórquez, E. (2018). Three-dimensional response of steel moment resisting buildings under seismic sequences. Engineering Structures, 175, 399-414. https://doi.org/10.1016/j.engstruct.2018.08.050
- SeismoSoft. (2018). SeismoStruct: A computer software for static and dynamic nonlinear analysis of framed structures. www.seismosoft.com
- TBDY. (2018). Türkiye Bina Deprem Yönetmeliği. 416. http://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1.pdf
- Vamvatsikos, D., Cornell, C.A., (2005). Direct estimation of the seismic demand and capacity of MDOF systems through Incremental Dynamic Analysis of an SDOF approximation. Journal of Structural Engineering, 131, 589-599.
- Xie, X., Lin, G., Duan, Y. F., Zhao, J. L., Wang, R. Z. (2012). Seismic damage of long span steel tower suspension bridge considering strong aftershocks. Earthquake and Structures, 3(5), 767-781. https://doi.org/10.12989/eas.2012.3.5.767
TBDY 2018 ile Tasarlanan Kompozit Binaların Ana ve Artçı Depremlerde Davranışı
Year 2023,
Volume: 15 Issue: 2, 416 - 428, 14.07.2023
Serkan Etli
,
Melek Akgül
Abstract
Çalışma kapsamında 5, 10, 15 ve 20 katlı moment aktaran kompozit çerçevelerden oluşan yapıların TBDY 2018 tasarım koşulları ile ZA grubu zeminler için tasarımları gerçekleştirilmiştir. Tasarlanan yapıların zaman tanım alanında dinamik analiz kullanılarak davranışları değerlendirilmiştir. Kullanılan depremler ana deprem ve artçı depremlerden oluşan seriler halinde seçilmiştir. Elde edilen sonuçlar çatı katı yer değiştirmeleri, taban kesme oranları, katlar arası ötelenme ve taban ivmeleri açısından değerlendirilmiştir. Çalışma kapsamında incelenen yapıların söz konusu ana ve artçı depremler etkisi altında incelenen parametreler açısından yeterli bir davranış sergilediği ortaya koyulmuştur.
References
- Akgül, M., Doğan, O., Etli, S. (2020). Investigation of Mechanical Properties of Granulated Waste Rubber Aggregates Substituted Self-Compacting Concrete Mortar Produced with Different Cement. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, 12(2), 787-798. https://doi.org/10.29137/umagd.734614
- ASCE-41-17. (2017). Seismic rehabilitation of existing buildings. ASCE Standard, 41–6. https://doi.org/10.1201/9781439804810-c7
- ATC-58-2. (2017). ATC-58-2: Probabilistic Performance-based Seismic Assessment and Design Guidelines. SEAOC Convention Proceedings, 1–10.
- Castro, J. M., Elghazouli, A. Y., Izzuddin, B. A. (2007). Assessment of effective slab widths in composite beams. Journal of Constructional Steel Research, 63(10), 1317–1327. https://doi.org/10.1016/j.jcsr.2006.11.018
- Castro, J.M., Elghazouli, A.Y., Izzuddin, B.A., (2008). Performance assessment of composite moment-resisting frames. 14th World Conference on Earthquake Engineering. Beijing, China.
- Cemalgil, S., Etli, S. (2020). Effects of Specimen Size on The Compressive Strength of Rubber Modified Self Compacting Concrete. International Journal of Pure and Applied Sciences, 6(2), 118-129. https://doi.org/10.29132/ijpas.789480
- Coburn, A., Spence, R., (2002). Earthquake Protection, John Wiley&Sons, England.
- Doğan, O., Kalaylı, M.A. (2019). Binalarda Yükseklik/Genişlik Oranı Ve Zemin Yatak Katsayısına Bağlı Devrilme Analizi. Gazi Mühendislik Bilimleri Dergisi, 5 (3), 300-314.
- Elghazouli, A. Y. Y., Castro, J. M. M., Izzuddin, B. A. A. (2008). Seismic performance of composite moment-resisting frames. Engineering Structures, 30(7), 1802-1819. https://doi.org/10.1016/j.engstruct.2007.12.004
- El-Metwally, S. E., Sheta, A. M. (2017). Performance Based Design of Steel Frames via Practical Advanced Analysis. 2017 International Annual Conference of the American Society for Engineering Management.
- EN 1993-1-1. (2002). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. CEN, 3(BS EN 1993-1- 1:2005). https://doi.org/10.1017/CBO9781107415324.004
- EN 1994-1-1. (2004). Eurocode 4: Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings. European Committee for Standardization, 3(February), 33–38. https://doi.org/10.1002/14651858.CD009305.pub2
- EN 1998-1-1. (2004). Eurocode 8 :Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings. European Committee for Normalization, Brussels, 2005. https://doi.org/[Authority: The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]
- EN 1992-1-1. (2004). Eurocode 2: Design of concrete structures - Part 1–1: General rules and rules for buildings. European Committee for Standardization, 1(Brussels, Belgium), 225. https://doi.org/978 0 580 73752 7
- Etli, S. (2021). Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences, 7(3), 526-536. https://doi.org/10.29132/ijpas.991166
- Etli, S., Güneyisi, E. M. (2020). Seismic performance evaluation of regular and irregular composite moment resisting frames. Latin American Journal of Solids and Structures, 17(7), 1-22. https://doi.org/10.1590/1679-78255969
- Etli, S., Güneyisi, E. M. (2021). Assessment of Seismic Behavior Factor of Code-Designed Steel–Concrete Composite Buildings. Arabian Journal for Science and Engineering, 46(5), 4271-4292. https://doi.org/10.1007/s13369-020-04913-9
- Etli, S., Güneyisi, E. M. (2022). Effect of nonlinear modeling approaches used for composite elements on seismic behavior of composite framed buildings. Sadhana - Academy Proceedings in Engineering Sciences, 47(2). https://doi.org/10.1007/s12046-022- 01871-w
- Etli, S., (2022). Parametrıc Analysıs Of The Performance Of Steel-Concrete Composıte Structures Desıgned Wıth TBDY 2018. International Journal of Innovative Engineering Applications, 6(1), https://doi.org/10.46460/ijiea.1029942
- Etli, S., Cemalgil, S., Onat, O. (2018). Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences, 4(1), 10-22. https://doi.org/10.29132/ijpas.341413
- FEMA-750. (2009). Nehrp Guidelines for the Seismic Rehabilitation of Buildings. NEHRP Seismic Design Technical Brief, 2, 37. http://www.nehrp.nist.gov/pdf/nistgcr9-917-3.pdf
- Ferraioli, M., Lavino, A., Mandara, A., (2014). Behaviour factor of code-designed steel moment-resisting frames. International Journal of Steel Structures 14,243-254.
- Goda, K., Salami, M. R. (2014). Inelastic seismic demand estimation of wood-frame houses subjected to mainshock-aftershock sequences. Bulletin of Earthquake Engineering, 12(2), 855–874. https://doi.org/10.1007/s10518-013-9534-4
- Hatzigeorgiou, G. D., Liolios, A. A. (2010). Nonlinear behaviour of RC frames under repeated strong ground motions. Soil Dynamics and Earthquake Engineering, 30(10), 1010–1025. https://doi.org/10.1016/j.soildyn.2010.04.013
- Hauke, B. (2008). Economic Application of Composite Beams With Moderate High Strength Materials. In 5th European Conference on Steel and Composite Structures, September, 3-5, September 2008, Graz, Austria
- Hosseinpour, F., Abdelnaby, A. E. (2017). Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures. Soil Dynamics and Earthquake Engineering, 92, 706-725. https://doi.org/10.1016/j.soildyn.2016.11.006
- Jalayer, F., Ebrahimian, H. (2017). Seismic risk assessment considering cumulative damage due to aftershocks. Earthquake Engineering and Structural Dynamics, 46(3), 369-389. https://doi.org/10.1002/eqe.2792
- Jalayer, F., Asprone, D., Prota, A., Manfredi, G. (2011). A decision support system for post-earthquake reliability assessment of structures subjected to aftershocks: An application to L’Aquila earthquake, 2009. Bulletin of Earthquake Engineering, 9(4), 997- 1014. https://doi.org/10.1007/s10518-010-9230-6
- Jamnani, H. H., Amiri, J. V., Rajabnejad, H. (2018). Energy distribution in RC shear wall-frame structures subject to repeated earthquakes. Soil Dynamics and Earthquake Engineering, 107, 116-128. https://doi.org/10.1016/j.soildyn.2018.01.010
- Li, Q., Ellingwood, B. R. (2007). Performance evaluation and damage assessment of steel frame buildings under main shockaftershock earthquake sequences. Earthquake Engineering and Structural Dynamics, 36(3), 405 427. https://doi.org/10.1002/eqe.667
- Papaloizou, L., Polycarpou, P., Komodromos, P., Hatzigeorgiou, G. D., Beskos, D. E. (2016). Two-dimensional numerical investigation of the effects of multiple sequential earthquake excitations on ancient multidrum columns. Earthquake and Structures, 10(3), 495-521. https://doi.org/10.12989/eas.2016.10.3.495
- PEER. (2014). Pacific Earthquake Engineering Research Center (PEER). Pacific Earthquake Engineering Research Center. https://ngawest2.berkeley.edu
- Pirooz, R. M., Habashi, S., Massumi, A. (2021). Required time gap between mainshock and aftershock for dynamic analysis of structures. Bulletin of Earthquake Engineering, 19(6), 2643-2670. https://doi.org/10.1007/s10518-021 01087-z
- Plumier, A., Doneux, C., Sanchez-Ricart L., Agatino, R., Plumier, C., Elnashai, A.S.E., Tsujii, M., Pinho, R., Bouwkamp, J., Parung, H., Broderick, B., Elghazouli, A., Cosenza, E., Manfredi, G. (2001). Seismic Behaviour and Design of Composite Steel Concrete Structures. Ecoest & Icons, Report No, 198. https://doi.org/10.13140/2.1.1951.1361
- Raghunandan, M, Liel, A. B., Ryu, H., Luco, N., Uma, S. R. (2012). Aftershock Fragility Curves and Tagging Assessments for a Mainshock-Damaged Building. In Proceedings of the 15th World Conference on Earthquake Engineering - WCEE, 10.
- Raghunandan, Meera, Liel, A. B., Luco, N. (2015). Aftershock collapse vulnerability assessment of reinforced concrete frame structures. Earthquake Engineering and Structural Dynamics, 44(3), 419-439. https://doi.org/10.1002/eqe.2478
- Ruiz-García, J., Yaghmaei-Sabegh, S., Bojórquez, E. (2018). Three-dimensional response of steel moment resisting buildings under seismic sequences. Engineering Structures, 175, 399-414. https://doi.org/10.1016/j.engstruct.2018.08.050
- SeismoSoft. (2018). SeismoStruct: A computer software for static and dynamic nonlinear analysis of framed structures. www.seismosoft.com
- TBDY. (2018). Türkiye Bina Deprem Yönetmeliği. 416. http://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1.pdf
- Vamvatsikos, D., Cornell, C.A., (2005). Direct estimation of the seismic demand and capacity of MDOF systems through Incremental Dynamic Analysis of an SDOF approximation. Journal of Structural Engineering, 131, 589-599.
- Xie, X., Lin, G., Duan, Y. F., Zhao, J. L., Wang, R. Z. (2012). Seismic damage of long span steel tower suspension bridge considering strong aftershocks. Earthquake and Structures, 3(5), 767-781. https://doi.org/10.12989/eas.2012.3.5.767