Review
BibTex RIS Cite

Dönüşüm Kaynaklı Plastisite (TRIP) ve Üçüncü Nesil İleri Yüksek Mukavemetli Çelikler Üzerine Bir İnceleme

Year 2023, Volume: 15 Issue: 2, 378 - 403, 14.07.2023
https://doi.org/10.29137/umagd.1246245

Abstract

Elektrikli araçların kullanımı artarken araçların ağırlığının azaltılması ise yakıt tasarrufu için elzemdir. Bu ise sacların kesit kalınlığının azaltılması ile mümkündür. Araç ağırlığının yaklaşık %70’ini demir esaslı malzemeler oluşturduğundan bu yolla büyük oranda ağırlık tasarrufu yapılabilmektedir. İnce sacların çarpışma anında yeterince koruyamama riski vardır. Bu yüzden araştırmalar hem yüksek mukavemet hem de şekillendirilebilirlik dengesi sunan İleri Yüksek Mukavemetli Çelikler (İYMÇ) üzerinde yoğunlaşmıştır. Özellikle, 3. Nesil İYMÇ’ler araştırmacıların ilgisini çekmektedir. Bunlar birinci nesilden daha yüksek mekanik özellikler vadederken, 2. Nesile kıyasla ucuzdurlar. 3. Nesil İYMÇ’ler genellikle çok fazlı mikroyapıya sahiptir ve fazların mikroyapıda bulundukları oranda çeliğin özelliklerini etkilemektedirler. Böylece farklı özelliklere sahip fazların sinerjetik etkisi ile çeliğin özellikleri istenildiği gibi ayarlanabilmektedir. Bu fazların içerisinde kalıntı östenit (KÖ) fazı, bu fazın miktarı ve kararlılığı önemlidir. Yüksek miktarda ve iyi kararlılığa sahip KÖ, deformasyon ile aşama aşama martensite dönüşerek plastik kararsızlığı yüksek gerinim bölgelerine ötelemekte ve çeliğin hasara uğramasını geciktirmektedir. Bu mekanizma TRIP etkisi olarak adlandırılmaktadır. Bu durum çeliklerin yüksek mekanik özelliklere sahip olmasının başlıca sebebidir. Yapılan bu inceleme ile TRIP mekanizması, dönüşüm kinetiği ve KÖ kararlılığını etkileyen faktörler incelenmiştir. 3. Nesil İYMÇ’lerinden Su Verme ve Paylaştırma Çelikleri, Orta Mn’lı Çelikler ve Karbürsüz Beynitik Çelikler irdelenerek termomekanik ve ısıl işlem süreçlerinin mikroyapıya etkisi açıklanmıştır.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

07/2019-22

Thanks

Çalışmamızın gerçekleştirilmesinde desteklerinden ötürü Gazi Üniversitesi Bilimsel Araştırma Projeleri birimine (GÜBAP 07/2019-22) teşekkür ederiz.

References

  • Barbier, D. (2014). Extension of the Martensite Transformation Temperature Relation to Larger Alloying Elements and Contents. Advanced Engineering Materials, 16(1), 122-127. https://doi.org/10.1002/adem.201300116
  • Basuki, A., & Aernoudt, E. (1999). Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite. Journal of Materials Processing Technology, 89-90, 37-43. https://doi.org/https://doi.org/10.1016/S0924-0136(99)00037-0
  • Belde, M., Springer, H., & Raabe, D. (2016). Vessel microstructure design: A new approach for site-specific core-shell micromechanical tailoring of TRIP-assisted ultra-high strength steels. Acta Materialia, 113, 19-31. https://doi.org/https://doi.org/10.1016/j.actamat.2016.04.051
  • Bhadeshia, H., & Honeycombe, R. (2017). Steels: microstructure and properties. Butterworth-Heinemann.
  • Bhadeshia, H. K. D. H. (1981a). Driving force for martensitic transformation in steels. Metal Science, 15(4), 175-177. https://doi.org/10.1179/030634581790426714
  • Bhadeshia, H. K. D. H. (1981b). Thermodynamic extrapolation and martensite-start temperature of substitutionally alloyed steels. Metal Science, 15(4), 178-180. https://doi.org/10.1179/030634581790426697
  • Bhadeshia, H. K. D. H. (2002). TRIP-Assisted Steels? ISIJ International, 42(9), 1059-1060. https://doi.org/https://doi.org/10.2355/isijinternational.42.1059
  • Bhadhon, K. M. H., Wang, X., McNally, E. A., & McDermid, J. R. (2022). Effect of Intercritical Annealing Parameters and Starting Microstructure on the Microstructural Evolution and Mechanical Properties of a Medium-Mn Third Generation Advanced High Strength Steel. Metals, 12(2), 356. https://doi.org/https://doi.org/10.3390/met12020356
  • Bleck, W., Guo, X., & Ma, Y. (2017). The TRIP effect and its application in cold formable sheet steels. Steel research international, 88(10), 1700218.
  • Bogers, A. J., & Burgers, W. G. (1964). Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice. Acta Metallurgica, 12(2), 255-261. https://doi.org/https://doi.org/10.1016/0001-6160(64)90194-4
  • Burd, J. T. J., Moore, E. A., Ezzat, H., Kirchain, R., & Roth, R. (2021). Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Applied Energy, 283, 116269. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.116269
  • Caballero, F., Bhadeshia, H., Mawella, K., Jones, D., & Brown, P. (2002). Very strong low temperature bainite. Materials Science and Technology, 18(3), 279-284. https://doi.org/https://doi.org/10.1179/026708301225000725
  • Caballero, F. G., Allain, S., Cornide, J., Velásquez, J. P., Garcia-Mateo, C., & Miller, M. K. (2013). Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Materials & Design, 49, 667-680. https://doi.org/https://doi.org/10.1016/j.matdes.2013.02.046
  • Caballero, F. G., Garcia-Mateo, C., & Miller, M. K. (2014). Design of novel bainitic steels: Moving from ultrafine to nanoscale structures. JOM, 66(5), 747-755. https://doi.org/https://doi.org/10.1007/s11837-014-0908-0
  • Cai, Z., Ding, H., Ying, Z., & Misra, R. (2014). Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2 C steel. Journal of Materials Engineering and Performance, 23(4), 1131-1137. https://doi.org/https://doi.org/10.1007/s11665-014-0866-2
  • Cai, Z., Zhang, D., Wen, G., Ma, L., & Misra, R. D. K. (2021). The Influence of Cooling Rate on Austenite Stability and Mechanical Properties in an Austenite–Ferrite Medium-Mn Steel. Journal of Materials Engineering and Performance, 30(11), 7917-7925. https://doi.org/https://doi.org/10.1007/s11665-021-05982-z
  • Cao, W., Wang, C., Shi, J., Wang, M., Hui, W., & Dong, H. (2011). Microstructure and mechanical properties of Fe–0.2 C–5Mn steel processed by ART-annealing. Materials Science and Engineering: A, 528(22-23), 6661-6666. https://doi.org/https://doi.org/10.1016/j.msea.2011.05.039
  • Chen, L., Ma, Z., Shi, R., Su, Y., Qiao, L., & Wang, L. (2020). Comprehensive effect of hydrostatic compressive stress in retained austenite on mechanical properties and hydrogen embrittlement of martensitic steels. International Journal of Hydrogen Energy, 45(41), 22102-22112. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.06.012
  • Chiang, J., Boyd, J. D., & Pilkey, A. K. (2015). Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. Materials Science and Engineering: A, 638, 132-142. https://doi.org/https://doi.org/10.1016/j.msea.2015.03.069
  • Creuziger, A., Poling, W. A., & Gnaeupel‐Herold, T. (2019). Assessment of martensitic transformation paths based on transformation potential calculations. Steel research international, 90(1), 1800370. https://doi.org/https://doi.org/10.1002/srin.201800370
  • Czerwinski, F. (2022). Critical minerals for zero-emission transportation. Materials, 15(16), 5539. https://doi.org/https://doi.org/10.3390/ma15165539
  • Dai, Z., Chen, H., Ding, R., Lu, Q., Zhang, C., Yang, Z., & van der Zwaag, S. (2021). Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Materials Science and Engineering: R: Reports, 143, 100590. https://doi.org/https://doi.org/10.1016/j.mser.2020.100590
  • Davenport, E., & Bain, E. (1970). Transformation of austenite at constant subcritical temperatures. Metallurgical Transactions, 1(12), 3503-3530. https://doi.org/https://doi.org/10.1007/BF03037892
  • Davut, K. (2013). Relation between Microstructure and Mechanical Properties of a Low-alloyed TRIP steel Aachen, Techn. Hochsch., Diss., 2013].
  • De Cooman, B. (2004). Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 8(3-4), 285-303. https://doi.org/https://doi.org/10.1016/j.cossms.2004.10.002
  • De Moor, E., Matlock, D. K., Speer, J. G., & Merwin, M. J. (2011). Austenite stabilization through manganese enrichment. Scripta Materialia, 64(2), 185-188. https://doi.org/https://doi.org/10.1016/j.scriptamat.2010.09.040

A Review on Transformation Induced Plasticity (TRIP) and Third Generation Advanced High Strength Steels

Year 2023, Volume: 15 Issue: 2, 378 - 403, 14.07.2023
https://doi.org/10.29137/umagd.1246245

Abstract

As electric vehicles take up much place in sales, fuel saving by reducing vehicle weight has become essential. This can be possible by reducing sheet thickness. Since 70% of vehicle weight consists of ferrous materials, weight reduction can be achieved downgauging. 3rd generation AHSSs have drawn attention from researchers. This generation promises higher properties than the 1st generation and they are less expensive than the 2nd. 3rd AHSSs generally have a multiphase microstructure affecting the properties in accordance with the phases in the microstructure. Thus, with the synergetic effect of each phase with different properties, the properties of the steel can be tailored. Among these phases, the retained austenite (RA) phase is important. High RA content having good stability may gradually transform to martensite under load which postpones the plastic instability to higher strains and delays the fracture. This mechanism is known to be TRIP effect. This is the main reason why steels exhibit high mechanical properties. In this review, TRIP mechanism, transformation kinetics and factors affecting RA stability were discussed. The effects of thermomechanical and heat treatment processes on the microstructure of the Quenching&Partitioning Steels, Medium Mn Steels and Carbide-free Bainitic Steels which are the 3rd Generation AHSSs were viewed.

Project Number

07/2019-22

References

  • Barbier, D. (2014). Extension of the Martensite Transformation Temperature Relation to Larger Alloying Elements and Contents. Advanced Engineering Materials, 16(1), 122-127. https://doi.org/10.1002/adem.201300116
  • Basuki, A., & Aernoudt, E. (1999). Influence of rolling of TRIP steel in the intercritical region on the stability of retained austenite. Journal of Materials Processing Technology, 89-90, 37-43. https://doi.org/https://doi.org/10.1016/S0924-0136(99)00037-0
  • Belde, M., Springer, H., & Raabe, D. (2016). Vessel microstructure design: A new approach for site-specific core-shell micromechanical tailoring of TRIP-assisted ultra-high strength steels. Acta Materialia, 113, 19-31. https://doi.org/https://doi.org/10.1016/j.actamat.2016.04.051
  • Bhadeshia, H., & Honeycombe, R. (2017). Steels: microstructure and properties. Butterworth-Heinemann.
  • Bhadeshia, H. K. D. H. (1981a). Driving force for martensitic transformation in steels. Metal Science, 15(4), 175-177. https://doi.org/10.1179/030634581790426714
  • Bhadeshia, H. K. D. H. (1981b). Thermodynamic extrapolation and martensite-start temperature of substitutionally alloyed steels. Metal Science, 15(4), 178-180. https://doi.org/10.1179/030634581790426697
  • Bhadeshia, H. K. D. H. (2002). TRIP-Assisted Steels? ISIJ International, 42(9), 1059-1060. https://doi.org/https://doi.org/10.2355/isijinternational.42.1059
  • Bhadhon, K. M. H., Wang, X., McNally, E. A., & McDermid, J. R. (2022). Effect of Intercritical Annealing Parameters and Starting Microstructure on the Microstructural Evolution and Mechanical Properties of a Medium-Mn Third Generation Advanced High Strength Steel. Metals, 12(2), 356. https://doi.org/https://doi.org/10.3390/met12020356
  • Bleck, W., Guo, X., & Ma, Y. (2017). The TRIP effect and its application in cold formable sheet steels. Steel research international, 88(10), 1700218.
  • Bogers, A. J., & Burgers, W. G. (1964). Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice. Acta Metallurgica, 12(2), 255-261. https://doi.org/https://doi.org/10.1016/0001-6160(64)90194-4
  • Burd, J. T. J., Moore, E. A., Ezzat, H., Kirchain, R., & Roth, R. (2021). Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Applied Energy, 283, 116269. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.116269
  • Caballero, F., Bhadeshia, H., Mawella, K., Jones, D., & Brown, P. (2002). Very strong low temperature bainite. Materials Science and Technology, 18(3), 279-284. https://doi.org/https://doi.org/10.1179/026708301225000725
  • Caballero, F. G., Allain, S., Cornide, J., Velásquez, J. P., Garcia-Mateo, C., & Miller, M. K. (2013). Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application. Materials & Design, 49, 667-680. https://doi.org/https://doi.org/10.1016/j.matdes.2013.02.046
  • Caballero, F. G., Garcia-Mateo, C., & Miller, M. K. (2014). Design of novel bainitic steels: Moving from ultrafine to nanoscale structures. JOM, 66(5), 747-755. https://doi.org/https://doi.org/10.1007/s11837-014-0908-0
  • Cai, Z., Ding, H., Ying, Z., & Misra, R. (2014). Microstructural evolution and deformation behavior of a hot-rolled and heat treated Fe-8Mn-4Al-0.2 C steel. Journal of Materials Engineering and Performance, 23(4), 1131-1137. https://doi.org/https://doi.org/10.1007/s11665-014-0866-2
  • Cai, Z., Zhang, D., Wen, G., Ma, L., & Misra, R. D. K. (2021). The Influence of Cooling Rate on Austenite Stability and Mechanical Properties in an Austenite–Ferrite Medium-Mn Steel. Journal of Materials Engineering and Performance, 30(11), 7917-7925. https://doi.org/https://doi.org/10.1007/s11665-021-05982-z
  • Cao, W., Wang, C., Shi, J., Wang, M., Hui, W., & Dong, H. (2011). Microstructure and mechanical properties of Fe–0.2 C–5Mn steel processed by ART-annealing. Materials Science and Engineering: A, 528(22-23), 6661-6666. https://doi.org/https://doi.org/10.1016/j.msea.2011.05.039
  • Chen, L., Ma, Z., Shi, R., Su, Y., Qiao, L., & Wang, L. (2020). Comprehensive effect of hydrostatic compressive stress in retained austenite on mechanical properties and hydrogen embrittlement of martensitic steels. International Journal of Hydrogen Energy, 45(41), 22102-22112. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.06.012
  • Chiang, J., Boyd, J. D., & Pilkey, A. K. (2015). Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. Materials Science and Engineering: A, 638, 132-142. https://doi.org/https://doi.org/10.1016/j.msea.2015.03.069
  • Creuziger, A., Poling, W. A., & Gnaeupel‐Herold, T. (2019). Assessment of martensitic transformation paths based on transformation potential calculations. Steel research international, 90(1), 1800370. https://doi.org/https://doi.org/10.1002/srin.201800370
  • Czerwinski, F. (2022). Critical minerals for zero-emission transportation. Materials, 15(16), 5539. https://doi.org/https://doi.org/10.3390/ma15165539
  • Dai, Z., Chen, H., Ding, R., Lu, Q., Zhang, C., Yang, Z., & van der Zwaag, S. (2021). Fundamentals and application of solid-state phase transformations for advanced high strength steels containing metastable retained austenite. Materials Science and Engineering: R: Reports, 143, 100590. https://doi.org/https://doi.org/10.1016/j.mser.2020.100590
  • Davenport, E., & Bain, E. (1970). Transformation of austenite at constant subcritical temperatures. Metallurgical Transactions, 1(12), 3503-3530. https://doi.org/https://doi.org/10.1007/BF03037892
  • Davut, K. (2013). Relation between Microstructure and Mechanical Properties of a Low-alloyed TRIP steel Aachen, Techn. Hochsch., Diss., 2013].
  • De Cooman, B. (2004). Structure–properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 8(3-4), 285-303. https://doi.org/https://doi.org/10.1016/j.cossms.2004.10.002
  • De Moor, E., Matlock, D. K., Speer, J. G., & Merwin, M. J. (2011). Austenite stabilization through manganese enrichment. Scripta Materialia, 64(2), 185-188. https://doi.org/https://doi.org/10.1016/j.scriptamat.2010.09.040
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Articles
Authors

Onur Okur 0000-0002-8290-0680

Mehmet Erdoğan 0000-0003-4430-9360

Project Number 07/2019-22
Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date February 1, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Okur, O., & Erdoğan, M. (2023). Dönüşüm Kaynaklı Plastisite (TRIP) ve Üçüncü Nesil İleri Yüksek Mukavemetli Çelikler Üzerine Bir İnceleme. International Journal of Engineering Research and Development, 15(2), 378-403. https://doi.org/10.29137/umagd.1246245

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.