Research Article
BibTex RIS Cite

Investigation of Machinability Characteristics of Al-9Si-0.1Sr-0.6Mg Alloy in Turning

Year 2023, Volume: 15 Issue: 2, 517 - 525, 14.07.2023
https://doi.org/10.29137/umagd.1257926

Abstract

The Al-9Si-0.1Sr-0.6Mg alloy examined in this study was produced by the permanent mold casting method. The chemical composition of the produced alloy was confirmed by inductively coupled plasma atomic emission spectroscopy method. Microstructural examinations were carried out on the samples prepared by standard metallographic methods. These samples were examined without etching and photographed. In the metallographic examinations, it was observed that the microstructure of the alloy consisted of primary aluminum (Al) dendrites, eutectic Al-Si phase regions containing spherical silicon (Si) particles, primary Si particles, Al4Sr and π phases. Machinability tests were carried out under different cutting speed (250, 400 and 550 m/min), feed rate (0.05; 0.15 and 0.25 mm/rev) and constant depth of cut conditions using uncoated carbide inserts. The cutting force components were measured with the Kistler 9273 dynamometer and the average surface roughness values were measured with the Mahr Perthometer device with a tracer tip. As a result of the tests, it was determined that the cutting force, average surface roughness and built-up edge formation decreased with the increase of cutting speed, while it increased with the increase of feed rate. It was found that cutting speed of 550 m/min and feed rate of 0.05 mm/rev parameters could be used for minimum cutting force, average surface roughness and built-up edge formation.

References

  • Aamir, M., Tolouei-Rad, M., Giasin, K., & Vafadar, A. (2020). Machinability of Al2024, Al6061, and Al5083 alloys using multi-hole simultaneous drilling approach. Journal of Materials Research and Technology, 9(5), 10991 11002. doi: 10.1016/j.jmrt.2020.07.078.
  • Abouei, V., Shabestari, S. G., & Saghafian, H. (2010). Dry sliding wear behaviour of hypereutectic Al–Si piston alloys containing ironrich intermetallics. Materials Characterization, 61(11), 1089–1096. doi: 10.1016/j.matchar.2010.07.001.
  • Acır, A., Turgut, Y., Übeyli, M., Günay, M., & Şeker, U. (2009). A study on the cutting force in milling of boron carbide particle reinforced aluminium composite. Science and Engineering of Composite Materials, 16(3), 187-196. doi:10.1515/SECM.2009.16.3.187.
  • Arthanari, S., Jang, J. C., & Shin, K. S. (2018). Corrosion studies of high pressure die-cast Al-Si-Ni and Al-Si-Ni-Cu alloys. Journal of Alloys and Compounds, 749, 146–154. doi: 10.1016/j.jallcom.2018.03.246
  • Ayata, G. (2018). Bor, stronsiyum ve/veya magnezyum katkılarının Al-Si alaşımlarının yapısal ve mekanik özelliklerine etkisi, Yüksek Lisans Tezi, Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye.
  • Basavakumar, K. G., Mukunda, P. G., & Chakraborty, M. (2007). Influence of melt treatments and turning inserts on cutting force and surface integrity in turning of Al–12Si and Al–12Si–3Cu cast alloys. Surface and Coating Technology. 201(8), 4757–4766. doi:10.1016/j.surfcoat.2006.10.015.
  • Bayraktar, Ş., & Afyon, F. (2020). Machinability Properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu Alloys. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 1-12. doi:10.1007/s40430-020 02281-x.
  • Bayraktar, Ş., & Çamkerten, Ç. Al-25Zn-3Cu-3Si Alaşımının İşlenmesinde Kaplamasız ve CVD-TiCN Kaplamalı Kesici Uçların Kesme Performansının Karşılaştırılması. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 12(2), 618-623. doi: 10.29137/umagd.705125.
  • Bayraktar, Ş., Çamkerten, Ç., & Salihoğlu, N. (2020). Bakır ve Silisyum İlavelerinin Al-25Zn Alaşımının CVD Al2O3 Kaplamalı Takımlarla Tornalanmasında İşlenebilirliğe Etkisinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8, 79-93. doi: 10.29109/gujsc.618229.
  • Bayraktar, Ş., & Demir, O. (2020). Processing of T6 heat-treated Al-12Si-0.6 Mg alloy. Materials and Manufacturing Processes, 35(3), 354-362. doi:10.1080/10426914.2020.1732412.
  • Bayraktar, Ş., & Hekimoğlu, A. P. (2022). Al-12Si-0.1Sr alaşımının PVD-TiAlN/TiN kaplamalı kesici ile işlenmesinde işlenebilirlik özellikleri üzerine deneysel draştırma. 5. Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology. Nevşehir, Türkiye.
  • Bayraktar, Ş., & Hekimoğlu, A. P. (2023). Performance evaluation of different carbide inserts in turning of newly developed Al‐12Si‐ 0.1 Sr alloy. Materialwissenschaft und Werkstofftechnik, 54(1), 120-128. doi:10.1002/mawe.202200148.
  • Bayraktar, Ş., & Hekimoğlu, A. P., & Çalış M. (2019). Al-12Si-0,1Sr Alaşımının Sermet Kesiciler ile Tornalanmasında Kesme Hızı ve İlerlemenin Kesme Kuvveti ve Yüzey Pürüzlülüğüne Etkisi. 4nd International Conference on Material Science and Technology in Kızılcahamam (IMSTEC’19), Ankara, Türkiye.
  • Braga, D. U., Diniz, A.E., Miranda, G. W., & Coppini, N. L. (2002). Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys. Journal of Materials Processing Technology, 122(1), 127-138. doi:10.1016/S0924-0136(01)01249-3.
  • Campbell, J. (2011). Complate Casting Handbook, Amsterdam, Elsevier Science.
  • Carrilero, M. S., Bienvenido, R., Sanchez, J. M., Alvarez, M., Gonzalez, A., & Marcos, M. A. (2002). SEM and EDS insight into the BULand BUE differences in the turning processes of AA2024 Al–Cu alloy. International Journal of Machine Tools and Manufacture, 42(2), 215–220. doi:10.1016/S0890-6955(01)00112-2.
  • Davis, J. R. (2001). Alloying: Understanding the Basics. Materials Park, Ohio, ASM International.
  • Dinaharan, I., David Raja Selvam, J., Jose, J., & Palanivel, R. (2023). Influence of fly ash particles on machining characteristics of AA6061 aluminum matrix composites produced using semisolid slurry casting. Transactions of the Indian Institute of Metals, 1-6. doi.org/10.1007/s12666-022-02869-y.
  • Dos Santos, G. R., da Costa, D. D., Amorim, F. L., & Torres, R. D. (2007). Characterization of DLC thin film and evaluation of machining forces using coated inserts in turning of Al–Si alloys. Surface and Coatings Technology, 202(4-7), 1029-1033. doi: 10.1016/j.surfcoat.2007.07.100.
  • Dwivedi, S. P., Kumar, S., & Kumar, A. (2012). Effect of turning parameters on surface roughness of A356/5% SiC composite produced by electromagnetic stir casting, Journal of Mechanical Science and Technology, 26, 3973-3979. doi:10.1007/s12206-012- 0914-5.
  • Fathipour, M., Hamedi, M., & Yousefi, R. (2013). Numerical and experimental analysis of machining of Al (20 vol% SiC) composite by the use of ABAQUS software. Materialwissenschaft und Werkstofftechnik, 44(1), 14-20. doi:10.1002/mawe.201300959.
  • Gai, S., Li, A., Liu, J., Gong, Z., & Zhao, J. (2022). Effect of surface roughness on stress concentration factor of machined surface and cutting parameter optimization in boring of Al-Si piston alloy. The International Journal of Advanced Manufacturing Technology, 121(5-6), 4129-4140. doi:10.1007/s00170-022-09597-z.
  • Hafız, M. F., & Kobayashi, T. (1994). Mechanical properties of modified and nonmodified eutectic Al-Si alloys. Journal of Japan Institute of Light Metals, 44(1), 28–34. doi:10.2464/jilm.44.28.
  • Hekimoğlu, A. P., & Ayata G. (2019). Effect of strontium and strontium-magnesium additions on the microstructure and mechanical properties of hypereutectic Al-17Si alloy, Pamukkale University Journal of Engineering Sciences, 25(1), 49-55. doi:10.5505/pajes.2018.46343.
  • Hekimoğlu, A. P., & Bayraktar, Ş. (2022)a. Experimental research on machinability characteristics of Al-9Si alloy: Effect of Sr and Mg additives, Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 236(13), 807-1816. doi:10.1177/09544054221092.
  • Hekimoğlu, A. P., & Bayraktar, Ş. (2022)b. Kokil Kalıba Döküm Yöntemi ile Üretilmiş Al-12Si-(0, 02-1) Sr Alaşımlarının CVDTiCN/Al2O3/TiN Kaplamalı Kesici Uç ile Tornada İşlenmesinde Kesme Kuvveti ve Yüzey Pürüzlülüğü Üzerine Deneysel Çalışma. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10(1), 50-62.
  • Hekimoğlu, A. P., & Calış, M. (2020)a. Effect of grain refinement with titanium on the microstructure, mechanical and corrosion properties of Al-25Zn alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 311-322. doi:10.17341/gazimmfd.464676.
  • Hekimoğlu, A. P., & Calış, M. (2020)b. Effects of titanium addition on structural, mechanical, tribological, and corrosion properties of Al-25Zn-3Cu and Al-25Zn-3Cu-3Si alloys, Transactions of Nonferrous Metals Society of China, 30(2), 303-317. doi:10.1016/S1003-6326(20)65214-1.
  • Hekimoğlu, A. P., & Hacıosmanoğlu, M. (2018). Microstructure and mechanical properties of Al-(2-30)Si alloys. 3nd International Conference on Material Science and Technology in Cappadocia, Nevşehir, Türkiye.
  • Hekimoğlu, A. P., & Savaskan, T. (2014). Structure and mechanical properties of Zn-(5-25)Al alloys, International Journal of Materials Research, 105(11), 1084-1089. doi: 10.3139/146.111116.
  • Hekimoğlu, A. P., Çalış M., & Ayata, G. (2018). Stronsiyum ve stronsiyum magnezyum katkılarının Al-9Si alaşımının yapısal ve mekanik özelliklerine etkisi. 1st International Symposium on Innovative Approaches in Scientific Studies, Antalya, Türkiye.
  • Hekimoğlu, A.P., Çalış, M., & Ayata, G. (2019). Effect of strontium and magnesium additions on the microstructure and mechanical properties of Al–12Si alloys. Metals and Materials International, 25, 1488–1499. doi:10.1007/s12540-019-00429-6.
  • Javidani, M., & Larouche, D. (2014). Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews, 59(3), 132–158. doi:10.1179/1743280413Y.0000000027
  • Korkut, I., Boy, M., Karacan, I., & Seker, U. (2007). Investigation of Chip-Back Temperature During Machining Depending on Cutting Parameters. Materials & Design, 28 (2329-2335). doi: 10.1016/j.matdes.2006.07.009.
  • Korkut, I., & Donertas, M. A. (2007). The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool– chip contact length during face milling. Materials & design, 28(1), 308-312. doi: 10.1016/j.matdes.2005.06.002.
  • Li, Q., Li, B., Li, J., Xia, T., Lan, Y., & Guo, T. (2017). Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7Si alloy. International Journal of Metalcasting, 11, 823–830. doi:10.1007/ s40962-016-0131-6.
  • Li, Y., Yang, Y., Wu, Y., Wang, L., & Liu, X. (2010). Quantitative comparison of three Ni-containing phases to the elevatedtemperature properties of Al–Si piston alloys. Materials Science and Engineering: A, 527(26), 7132 7137. doi:10.1016/j.msea.2010.07.073.
  • Marani, M., Songmene, V., Kouam, J., & Zedan, Y. (2018). Experimental investigation on microstructure, mechanical properties and dust emission when milling Al-20 Mg 2 Si-2Cu metal matrix composite with modifier elements. The International Journal of Advanced Manufacturing Technology, 99, 789-802. doi.org/10.1007/s00170-018-2491-y.
  • Nikanorov, S. P., Volkov, M. P., Gurin, V. N., Burenkov, Y. A., Derkachenko, L. I., Kardashev, B. K., & Wilcox, W. R. (2005). Structural and mechanical properties of Al–Si alloys obtained by fast cooling of a levitated melt. Materials Science and Engineering: A, 390(1-2), 63–69. doi:10.1016/j.msea. 2004.07.037
  • Özel, T., & Karpat, Y. (2005). Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks. International Journal of Machine Tools and Manufacture, 45, 467-479. doi: 10.1016/j.ijmachtools.2004.09.007.
  • Prabhudev, M. S., Auradi, V., Venkateswarlu, K., Siddalingswamy, N. H., & Kori, S. A. (2014). Influence of Cu addition on dry sliding wear behaviour of A356 alloy. Procedia Engineering, 97, 1361–1367. doi:10.1016/j.proeng.2014.12.417.
  • Rainen, R. A., & Ekvall, J. C. (1988). Elevated-temperature Al alloys for aircraft structure. Journal of Metals, 40(5), 16–18. doi:10.1007/BF03258903.
  • Razin, A. A., Ahammed, D. S., Nur, M. A., & Kaiser, M. S. (2022). Role of Si on machined surfaces of Al-based automotive alloys under varying machining parameters. Journal of Mechanical and Energy Engineering, 6(1), 43-52. doi:10.30464/jmee.2021.6.1.43.
  • Santos, H. de O., Reis, F. M. dos, Kunioshi, C. T., Rossi, J. L. & Costa, I. (2005). Corrosion performance of Al-Si-Cu hypereutectic alloys in a synthetic condensed automotive solution. Materials Research, 8(2), 155–159. doi:10.1590/ s1516-14392005000200011.
  • Savaşkan, T., & Turhal, M.Ş. (2003). Turhal, Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn–Al–Cu alloys, Materials Characterization, 51(4), 259-270. doi:10.1016/j.matchar.2003.12.003.
  • Shaha, S. K., Czerwinski, F., Kasprzak, W., Friedman, J. & Chen, D.L. (2015). Effect of solidification rate and loading mode on deformation behavior of cast Al-Si-Cu-Mg alloy with additions of transition metals. Materials Science and Engineering A, 636, 361– 372. doi:10.1016/j.msea.2015.03.077. Zeren, M. (2007). The effect of heat-treatment on aluminum-based piston alloys. Materials and Design, 28(9), 2511–2517. doi: 10.1016/j.matdes.2006.09.010.

Al-9Si-0.1Sr-0.6Mg Alaşımının Tornalanmasında İşlenebilirlik Karakteristiklerinin Araştırılması

Year 2023, Volume: 15 Issue: 2, 517 - 525, 14.07.2023
https://doi.org/10.29137/umagd.1257926

Abstract

Bu çalışmada incelenen Al-9Si-0.1Sr-0.6Mg alaşımı kokil kalıba döküm yöntemiyle üretildi. Üretilen alaşımın kimyasal bileşimi indüktif eşleşmiş plazma atomik emisyon spektroskopisi (ICP-OES) yöntemiyle doğrulandı. İçyapı incelemeleri standard metalografik yöntemlerle hazırlanan numuneler üzerinde dağlama yapılmadan gerçekleştirildi. Metalografik incelemelerde alaşımın içyapısının birincil alüminyum (Al) dendritlerinden, küresel morfolojiye sahip silisyum (Si) parçacıkları içeren ötektik Al-Si faz bölgelerinden, ötektik dışı Si parçacıklarından, Al4Sr ve π fazlarından oluştuğu gözlendi. İşlenebilirlik testleri, kaplamasız karbür kesici uçlar kullanılarak farklı kesme hızı (250, 400 ve 550 m/dak), ilerleme (0,05; 0,15 ve 0,25 mm/dev) ve sabit kesme derinliği şartları altında gerçekleştirildi. Kesme kuvveti bileşenleri, Kistler 9273 dinamometre ve ortalama yüzey pürüzlülüğü değerleri ise izleyici uçlu Mahr Perthometer cihaz ile ölçüldü. Testler sonucunda kesme hızının artması ile kesme kuvveti, ortalama yüzey pürüzlülüğü ve yığıntı talaş (YT) oluşumu azalırken, ilerlemenin artması ile arttığı belirlenmiştir. Minimum kesme kuvveti, ortalama yüzey pürüzlülüğü ve YT oluşumu için 550 m/dak kesme hızı ve 0,05 mm/dev ilerleme parametrelerinin kullanılabileceği tespit edilmiştir.

References

  • Aamir, M., Tolouei-Rad, M., Giasin, K., & Vafadar, A. (2020). Machinability of Al2024, Al6061, and Al5083 alloys using multi-hole simultaneous drilling approach. Journal of Materials Research and Technology, 9(5), 10991 11002. doi: 10.1016/j.jmrt.2020.07.078.
  • Abouei, V., Shabestari, S. G., & Saghafian, H. (2010). Dry sliding wear behaviour of hypereutectic Al–Si piston alloys containing ironrich intermetallics. Materials Characterization, 61(11), 1089–1096. doi: 10.1016/j.matchar.2010.07.001.
  • Acır, A., Turgut, Y., Übeyli, M., Günay, M., & Şeker, U. (2009). A study on the cutting force in milling of boron carbide particle reinforced aluminium composite. Science and Engineering of Composite Materials, 16(3), 187-196. doi:10.1515/SECM.2009.16.3.187.
  • Arthanari, S., Jang, J. C., & Shin, K. S. (2018). Corrosion studies of high pressure die-cast Al-Si-Ni and Al-Si-Ni-Cu alloys. Journal of Alloys and Compounds, 749, 146–154. doi: 10.1016/j.jallcom.2018.03.246
  • Ayata, G. (2018). Bor, stronsiyum ve/veya magnezyum katkılarının Al-Si alaşımlarının yapısal ve mekanik özelliklerine etkisi, Yüksek Lisans Tezi, Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye.
  • Basavakumar, K. G., Mukunda, P. G., & Chakraborty, M. (2007). Influence of melt treatments and turning inserts on cutting force and surface integrity in turning of Al–12Si and Al–12Si–3Cu cast alloys. Surface and Coating Technology. 201(8), 4757–4766. doi:10.1016/j.surfcoat.2006.10.015.
  • Bayraktar, Ş., & Afyon, F. (2020). Machinability Properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu Alloys. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 1-12. doi:10.1007/s40430-020 02281-x.
  • Bayraktar, Ş., & Çamkerten, Ç. Al-25Zn-3Cu-3Si Alaşımının İşlenmesinde Kaplamasız ve CVD-TiCN Kaplamalı Kesici Uçların Kesme Performansının Karşılaştırılması. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 12(2), 618-623. doi: 10.29137/umagd.705125.
  • Bayraktar, Ş., Çamkerten, Ç., & Salihoğlu, N. (2020). Bakır ve Silisyum İlavelerinin Al-25Zn Alaşımının CVD Al2O3 Kaplamalı Takımlarla Tornalanmasında İşlenebilirliğe Etkisinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8, 79-93. doi: 10.29109/gujsc.618229.
  • Bayraktar, Ş., & Demir, O. (2020). Processing of T6 heat-treated Al-12Si-0.6 Mg alloy. Materials and Manufacturing Processes, 35(3), 354-362. doi:10.1080/10426914.2020.1732412.
  • Bayraktar, Ş., & Hekimoğlu, A. P. (2022). Al-12Si-0.1Sr alaşımının PVD-TiAlN/TiN kaplamalı kesici ile işlenmesinde işlenebilirlik özellikleri üzerine deneysel draştırma. 5. Internatinonal Conference on Materials Science, Mechanical and Automotive Engineerings and Technology. Nevşehir, Türkiye.
  • Bayraktar, Ş., & Hekimoğlu, A. P. (2023). Performance evaluation of different carbide inserts in turning of newly developed Al‐12Si‐ 0.1 Sr alloy. Materialwissenschaft und Werkstofftechnik, 54(1), 120-128. doi:10.1002/mawe.202200148.
  • Bayraktar, Ş., & Hekimoğlu, A. P., & Çalış M. (2019). Al-12Si-0,1Sr Alaşımının Sermet Kesiciler ile Tornalanmasında Kesme Hızı ve İlerlemenin Kesme Kuvveti ve Yüzey Pürüzlülüğüne Etkisi. 4nd International Conference on Material Science and Technology in Kızılcahamam (IMSTEC’19), Ankara, Türkiye.
  • Braga, D. U., Diniz, A.E., Miranda, G. W., & Coppini, N. L. (2002). Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys. Journal of Materials Processing Technology, 122(1), 127-138. doi:10.1016/S0924-0136(01)01249-3.
  • Campbell, J. (2011). Complate Casting Handbook, Amsterdam, Elsevier Science.
  • Carrilero, M. S., Bienvenido, R., Sanchez, J. M., Alvarez, M., Gonzalez, A., & Marcos, M. A. (2002). SEM and EDS insight into the BULand BUE differences in the turning processes of AA2024 Al–Cu alloy. International Journal of Machine Tools and Manufacture, 42(2), 215–220. doi:10.1016/S0890-6955(01)00112-2.
  • Davis, J. R. (2001). Alloying: Understanding the Basics. Materials Park, Ohio, ASM International.
  • Dinaharan, I., David Raja Selvam, J., Jose, J., & Palanivel, R. (2023). Influence of fly ash particles on machining characteristics of AA6061 aluminum matrix composites produced using semisolid slurry casting. Transactions of the Indian Institute of Metals, 1-6. doi.org/10.1007/s12666-022-02869-y.
  • Dos Santos, G. R., da Costa, D. D., Amorim, F. L., & Torres, R. D. (2007). Characterization of DLC thin film and evaluation of machining forces using coated inserts in turning of Al–Si alloys. Surface and Coatings Technology, 202(4-7), 1029-1033. doi: 10.1016/j.surfcoat.2007.07.100.
  • Dwivedi, S. P., Kumar, S., & Kumar, A. (2012). Effect of turning parameters on surface roughness of A356/5% SiC composite produced by electromagnetic stir casting, Journal of Mechanical Science and Technology, 26, 3973-3979. doi:10.1007/s12206-012- 0914-5.
  • Fathipour, M., Hamedi, M., & Yousefi, R. (2013). Numerical and experimental analysis of machining of Al (20 vol% SiC) composite by the use of ABAQUS software. Materialwissenschaft und Werkstofftechnik, 44(1), 14-20. doi:10.1002/mawe.201300959.
  • Gai, S., Li, A., Liu, J., Gong, Z., & Zhao, J. (2022). Effect of surface roughness on stress concentration factor of machined surface and cutting parameter optimization in boring of Al-Si piston alloy. The International Journal of Advanced Manufacturing Technology, 121(5-6), 4129-4140. doi:10.1007/s00170-022-09597-z.
  • Hafız, M. F., & Kobayashi, T. (1994). Mechanical properties of modified and nonmodified eutectic Al-Si alloys. Journal of Japan Institute of Light Metals, 44(1), 28–34. doi:10.2464/jilm.44.28.
  • Hekimoğlu, A. P., & Ayata G. (2019). Effect of strontium and strontium-magnesium additions on the microstructure and mechanical properties of hypereutectic Al-17Si alloy, Pamukkale University Journal of Engineering Sciences, 25(1), 49-55. doi:10.5505/pajes.2018.46343.
  • Hekimoğlu, A. P., & Bayraktar, Ş. (2022)a. Experimental research on machinability characteristics of Al-9Si alloy: Effect of Sr and Mg additives, Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 236(13), 807-1816. doi:10.1177/09544054221092.
  • Hekimoğlu, A. P., & Bayraktar, Ş. (2022)b. Kokil Kalıba Döküm Yöntemi ile Üretilmiş Al-12Si-(0, 02-1) Sr Alaşımlarının CVDTiCN/Al2O3/TiN Kaplamalı Kesici Uç ile Tornada İşlenmesinde Kesme Kuvveti ve Yüzey Pürüzlülüğü Üzerine Deneysel Çalışma. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 10(1), 50-62.
  • Hekimoğlu, A. P., & Calış, M. (2020)a. Effect of grain refinement with titanium on the microstructure, mechanical and corrosion properties of Al-25Zn alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 311-322. doi:10.17341/gazimmfd.464676.
  • Hekimoğlu, A. P., & Calış, M. (2020)b. Effects of titanium addition on structural, mechanical, tribological, and corrosion properties of Al-25Zn-3Cu and Al-25Zn-3Cu-3Si alloys, Transactions of Nonferrous Metals Society of China, 30(2), 303-317. doi:10.1016/S1003-6326(20)65214-1.
  • Hekimoğlu, A. P., & Hacıosmanoğlu, M. (2018). Microstructure and mechanical properties of Al-(2-30)Si alloys. 3nd International Conference on Material Science and Technology in Cappadocia, Nevşehir, Türkiye.
  • Hekimoğlu, A. P., & Savaskan, T. (2014). Structure and mechanical properties of Zn-(5-25)Al alloys, International Journal of Materials Research, 105(11), 1084-1089. doi: 10.3139/146.111116.
  • Hekimoğlu, A. P., Çalış M., & Ayata, G. (2018). Stronsiyum ve stronsiyum magnezyum katkılarının Al-9Si alaşımının yapısal ve mekanik özelliklerine etkisi. 1st International Symposium on Innovative Approaches in Scientific Studies, Antalya, Türkiye.
  • Hekimoğlu, A.P., Çalış, M., & Ayata, G. (2019). Effect of strontium and magnesium additions on the microstructure and mechanical properties of Al–12Si alloys. Metals and Materials International, 25, 1488–1499. doi:10.1007/s12540-019-00429-6.
  • Javidani, M., & Larouche, D. (2014). Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews, 59(3), 132–158. doi:10.1179/1743280413Y.0000000027
  • Korkut, I., Boy, M., Karacan, I., & Seker, U. (2007). Investigation of Chip-Back Temperature During Machining Depending on Cutting Parameters. Materials & Design, 28 (2329-2335). doi: 10.1016/j.matdes.2006.07.009.
  • Korkut, I., & Donertas, M. A. (2007). The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool– chip contact length during face milling. Materials & design, 28(1), 308-312. doi: 10.1016/j.matdes.2005.06.002.
  • Li, Q., Li, B., Li, J., Xia, T., Lan, Y., & Guo, T. (2017). Effects of the addition of Mg on the microstructure and mechanical properties of hypoeutectic Al-7Si alloy. International Journal of Metalcasting, 11, 823–830. doi:10.1007/ s40962-016-0131-6.
  • Li, Y., Yang, Y., Wu, Y., Wang, L., & Liu, X. (2010). Quantitative comparison of three Ni-containing phases to the elevatedtemperature properties of Al–Si piston alloys. Materials Science and Engineering: A, 527(26), 7132 7137. doi:10.1016/j.msea.2010.07.073.
  • Marani, M., Songmene, V., Kouam, J., & Zedan, Y. (2018). Experimental investigation on microstructure, mechanical properties and dust emission when milling Al-20 Mg 2 Si-2Cu metal matrix composite with modifier elements. The International Journal of Advanced Manufacturing Technology, 99, 789-802. doi.org/10.1007/s00170-018-2491-y.
  • Nikanorov, S. P., Volkov, M. P., Gurin, V. N., Burenkov, Y. A., Derkachenko, L. I., Kardashev, B. K., & Wilcox, W. R. (2005). Structural and mechanical properties of Al–Si alloys obtained by fast cooling of a levitated melt. Materials Science and Engineering: A, 390(1-2), 63–69. doi:10.1016/j.msea. 2004.07.037
  • Özel, T., & Karpat, Y. (2005). Predictive Modeling of Surface Roughness and Tool Wear in Hard Turning Using Regression and Neural Networks. International Journal of Machine Tools and Manufacture, 45, 467-479. doi: 10.1016/j.ijmachtools.2004.09.007.
  • Prabhudev, M. S., Auradi, V., Venkateswarlu, K., Siddalingswamy, N. H., & Kori, S. A. (2014). Influence of Cu addition on dry sliding wear behaviour of A356 alloy. Procedia Engineering, 97, 1361–1367. doi:10.1016/j.proeng.2014.12.417.
  • Rainen, R. A., & Ekvall, J. C. (1988). Elevated-temperature Al alloys for aircraft structure. Journal of Metals, 40(5), 16–18. doi:10.1007/BF03258903.
  • Razin, A. A., Ahammed, D. S., Nur, M. A., & Kaiser, M. S. (2022). Role of Si on machined surfaces of Al-based automotive alloys under varying machining parameters. Journal of Mechanical and Energy Engineering, 6(1), 43-52. doi:10.30464/jmee.2021.6.1.43.
  • Santos, H. de O., Reis, F. M. dos, Kunioshi, C. T., Rossi, J. L. & Costa, I. (2005). Corrosion performance of Al-Si-Cu hypereutectic alloys in a synthetic condensed automotive solution. Materials Research, 8(2), 155–159. doi:10.1590/ s1516-14392005000200011.
  • Savaşkan, T., & Turhal, M.Ş. (2003). Turhal, Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn–Al–Cu alloys, Materials Characterization, 51(4), 259-270. doi:10.1016/j.matchar.2003.12.003.
  • Shaha, S. K., Czerwinski, F., Kasprzak, W., Friedman, J. & Chen, D.L. (2015). Effect of solidification rate and loading mode on deformation behavior of cast Al-Si-Cu-Mg alloy with additions of transition metals. Materials Science and Engineering A, 636, 361– 372. doi:10.1016/j.msea.2015.03.077. Zeren, M. (2007). The effect of heat-treatment on aluminum-based piston alloys. Materials and Design, 28(9), 2511–2517. doi: 10.1016/j.matdes.2006.09.010.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Articles
Authors

Ali Paşa Hekimoğlu 0000-0003-2396-4876

Şenol Bayraktar 0000-0001-8226-0188

Early Pub Date July 7, 2023
Publication Date July 14, 2023
Submission Date March 1, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA Hekimoğlu, A. P., & Bayraktar, Ş. (2023). Al-9Si-0.1Sr-0.6Mg Alaşımının Tornalanmasında İşlenebilirlik Karakteristiklerinin Araştırılması. International Journal of Engineering Research and Development, 15(2), 517-525. https://doi.org/10.29137/umagd.1257926

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.