Araştırma Makalesi
BibTex RIS Kaynak Göster

Proaktif Trafik Kaza Risk Değerlendirme Yaklaşımı ve Türkiye İçin Uygulanabilirliğinin Tartışılması

Yıl 2023, Cilt: 15 Sayı: 3, 250 - 256, 31.12.2023
https://doi.org/10.29137/umagd.1367522

Öz

Trafik kazaları, tüm yaş grupları için ölüm nedenleri listesinin ilk sıralarında yer almaktadır. Yıllık olarak dünya genelinde yaklaşık 1,35 milyon ölümlü trafik kazası kaynaklı olay meydana gelmektedir. Uzmanlar bir yol kesiminin risk düzeyini değerlendirmek amacıyla, sıklıkla Reaktif Yaklaşım (ReY) tabanlı metotlar kullanmaktadır. ReY, kazaların oluşmasını bekleyen ve ardından kaza verilerini analiz ederek önlemler öneren bir yaklaşım olup, bu yöntem için yeterli verinin toplanması gereken süre uzun olabilir. Diğer taraftan, Proaktif Yaklaşımlar (ProY) ise trafik akışı içindeki taşıtların risk potansiyeli olan hareketleri incelenmekte ve bu hareketlerin analizinden elde edilen vekil güvenlik ölçütleri kullanılmaktadır. Bu yaklaşım sayesinde, risk analizi için gereken süre önemli ölçüde kısalmaktadır. Türkiye Cumhuriyeti Karayolu Trafik Güvenliği Strateji Belgesinde trafik kazası kaynaklı ölümlerin 2030 yılına kadar %50 azaltılması hedeflenmektedir. Mevcut karayolu risk değerlendirmesi için kullanılan ReY yöntemlerinin eksik veri kaynaklı yavaş kalabileceği ve belirtilen hedefe zamanında ulaşılamayabileceği göz önüne alınmalıdır. Bu çalışmanın temel amacı, Dünya genelinde kullanılan ProY yöntemleri hakkında bilgi sunmak ve Türkiye karayolları için ProY’un risk değerlendirme görevlerinde kullanılmasının tartışılmasıdır. Bu bağlamda, öncelikle mevcut ReY yöntemleri açıklanmış ve ardından ProY yöntemleri ile ilgili bilgilere odaklanılmıştır. Son olarak ProY örnekleri ele alınarak ülkemizde uygulama potansiyeli taşıyan uygulamalardan söz edilmiştir.

Kaynakça

  • Amundsen, F. H., & Hyden, C. (1977). Proceedings of first workshop on traffic conflicts. Oslo, TTI, Oslo, Norway and LTH Lund, Sweden, 78.
  • Badi, I., & Bouraima, M. B. (2023). Development of MCDM-based Frameworks for Proactively Managing the Most Critical Risk Factors for Transport Accidents: A Case Study in Libya. Spectrum of engineering and management sciences, 1(1), 38-47.
  • Chang, A., Saunier, N., & Laureshyn, A. (2017). Proactive methods for road safety analysis. SAE International, 5. http://papers.sae.org/wp-0005/
  • Dimitrijevic, B., Khales, S. D., Asadi, R., & Lee, J. (2022). Short-term segment-level crash risk prediction using advanced data modeling with proactive and reactive crash data. Applied Sciences, 12(2), 856.
  • Du, W., Dash, A., Li, J., Wei, H., & Wang, G. (2023). Safety in Traffic Management Systems: A Comprehensive Survey. Designs, 7(4), 100.
  • EGM.(2021). 2021-2030 Karayolu Trafik Güvenliği Strateji Belgesi. https://www.trafik.gov.tr/2021-2023-karayolu-trafik-guvenligi-strateji-belgesi-ve-2021-2023-karayolu-trafik-guvenligi-eylem-plani
  • Elvik, R., Vaa, T., Hoye, A., & Sorensen, M. (2009). The Handbook of Road Safety Measures. Emerald Group Publishing.
  • FHWA. (2006). FHWA Road safety audit guidelines. In Fhwa-Sa-06-06.
  • Hassanpour, S., & Hadadi, F. (2022). Prioritization of infrastructure factors affecting on the safety of two-lane roads using proactive and reactive methods (Case study: Ahar-Tabriz road). Amirkabir journal of civil engineering, 54(4), 1419-1440.
  • Hayward, J. C. (1972). Near miss determination through use of a scale of danger.
  • Hydén, C. (1987). The development of a method for traffic safety evaluation: The Swedish Traffic Conflicts Technique. Bulletin Lund Institute of Technology, Department, 70.
  • Johnsson, C., Laureshyn, A., & De Ceunynck, T. (2018). In search of surrogate safety indicators for vulnerable road users: a review of surrogate safety indicators. Transport Reviews, 38(6), 765–785.
  • Kar, P., Venthuruthiyil, S. P., & Chunchu, M. (2023). Assessing the crash risk of mixed traffic on multilane rural highways using a proactive safety approach. Accident Analysis & Prevention, 188, 107099.
  • Laureshyn, A., Svensson, Å., & Hydén, C. (2010). Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation. Accident Analysis & Prevention, 42(6), 1637–1646.
  • Mahmud, S. M. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Research, 41(4), 153–163.
  • Mishra, S., Rajendran, P. K., Vecchietti, L. F., & Har, D. (2023). Sensing accident-prone features in urban scenes for proactive driving and accident prevention. IEEE Transactions on Intelligent Transportation Systems.
  • Noh, B., & Yeo, H. (2022). A novel method of predictive collision risk area estimation for proactive pedestrian accident prevention system in urban surveillance infrastructure. Transportation research part C: emerging technologies, 137, 103570.
  • Park, H., Oh, C., Moon, J., & Kim, S. (2018). Development of a lane change risk index using vehicle trajectory data. Accident Analysis & Prevention, 110, 1–8.
  • Tarko, A. P. (2018a). Estimating the expected number of crashes with traffic conflicts and the Lomax Distribution–A theoretical and numerical exploration. Accident Analysis & Prevention, 113, 63–73.
  • Tarko, A. P. (2018b). Surrogate measures of safety. In Safe mobility: challenges, methodology and solutions (Vol. 11, pp. 383–405). Emerald Publishing Limited.
  • Zheng, L., Ismail, K., & Meng, X. (2014). Traffic conflict techniques for road safety analysis: open questions and some insights. Canadian Journal of Civil Engineering, 41(7), 633–641.

Proactive Traffic Accident Risk Assessment Approach and Discussion of its Applicability for Türkiye

Yıl 2023, Cilt: 15 Sayı: 3, 250 - 256, 31.12.2023
https://doi.org/10.29137/umagd.1367522

Öz

Traffic accidents rank among the top causes of death across all age groups. Annually, approximately 1.35 million fatal traffic accidents occur worldwide. To assess the risk level of a road section, experts often use Reactive Approaches (ReA) based on methods that anticipate accidents and then recommend measures by analyzing accident data. However, this approach can require a long time to collect sufficient data. On the other hand, Proactive Approaches (ProA) examine potentially hazardous movements of vehicles within traffic flow and utilize surrogate safety measures derived from the analysis of these movements. This approach significantly shortens the time required for risk analysis. The Republic of Turkey's Road Traffic Safety Strategy Document aims to reduce traffic accident-related fatalities by 50% by 2030. It should be considered that the ReA methods currently used for road risk assessment might be slow due to insufficient data, potentially hindering the timely achievement of this goal. The main objective of this study is to provide information about globally employed ProA methods and discuss their application in risk assessment tasks for Turkish highways. In this context, existing ReA methods are first explained, followed by a focus on ProA methods. Finally, ProA examples are discussed, highlighting potential applications in Turkey.

Kaynakça

  • Amundsen, F. H., & Hyden, C. (1977). Proceedings of first workshop on traffic conflicts. Oslo, TTI, Oslo, Norway and LTH Lund, Sweden, 78.
  • Badi, I., & Bouraima, M. B. (2023). Development of MCDM-based Frameworks for Proactively Managing the Most Critical Risk Factors for Transport Accidents: A Case Study in Libya. Spectrum of engineering and management sciences, 1(1), 38-47.
  • Chang, A., Saunier, N., & Laureshyn, A. (2017). Proactive methods for road safety analysis. SAE International, 5. http://papers.sae.org/wp-0005/
  • Dimitrijevic, B., Khales, S. D., Asadi, R., & Lee, J. (2022). Short-term segment-level crash risk prediction using advanced data modeling with proactive and reactive crash data. Applied Sciences, 12(2), 856.
  • Du, W., Dash, A., Li, J., Wei, H., & Wang, G. (2023). Safety in Traffic Management Systems: A Comprehensive Survey. Designs, 7(4), 100.
  • EGM.(2021). 2021-2030 Karayolu Trafik Güvenliği Strateji Belgesi. https://www.trafik.gov.tr/2021-2023-karayolu-trafik-guvenligi-strateji-belgesi-ve-2021-2023-karayolu-trafik-guvenligi-eylem-plani
  • Elvik, R., Vaa, T., Hoye, A., & Sorensen, M. (2009). The Handbook of Road Safety Measures. Emerald Group Publishing.
  • FHWA. (2006). FHWA Road safety audit guidelines. In Fhwa-Sa-06-06.
  • Hassanpour, S., & Hadadi, F. (2022). Prioritization of infrastructure factors affecting on the safety of two-lane roads using proactive and reactive methods (Case study: Ahar-Tabriz road). Amirkabir journal of civil engineering, 54(4), 1419-1440.
  • Hayward, J. C. (1972). Near miss determination through use of a scale of danger.
  • Hydén, C. (1987). The development of a method for traffic safety evaluation: The Swedish Traffic Conflicts Technique. Bulletin Lund Institute of Technology, Department, 70.
  • Johnsson, C., Laureshyn, A., & De Ceunynck, T. (2018). In search of surrogate safety indicators for vulnerable road users: a review of surrogate safety indicators. Transport Reviews, 38(6), 765–785.
  • Kar, P., Venthuruthiyil, S. P., & Chunchu, M. (2023). Assessing the crash risk of mixed traffic on multilane rural highways using a proactive safety approach. Accident Analysis & Prevention, 188, 107099.
  • Laureshyn, A., Svensson, Å., & Hydén, C. (2010). Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation. Accident Analysis & Prevention, 42(6), 1637–1646.
  • Mahmud, S. M. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of proximal surrogate indicators for safety evaluation: A review of recent developments and research needs. IATSS Research, 41(4), 153–163.
  • Mishra, S., Rajendran, P. K., Vecchietti, L. F., & Har, D. (2023). Sensing accident-prone features in urban scenes for proactive driving and accident prevention. IEEE Transactions on Intelligent Transportation Systems.
  • Noh, B., & Yeo, H. (2022). A novel method of predictive collision risk area estimation for proactive pedestrian accident prevention system in urban surveillance infrastructure. Transportation research part C: emerging technologies, 137, 103570.
  • Park, H., Oh, C., Moon, J., & Kim, S. (2018). Development of a lane change risk index using vehicle trajectory data. Accident Analysis & Prevention, 110, 1–8.
  • Tarko, A. P. (2018a). Estimating the expected number of crashes with traffic conflicts and the Lomax Distribution–A theoretical and numerical exploration. Accident Analysis & Prevention, 113, 63–73.
  • Tarko, A. P. (2018b). Surrogate measures of safety. In Safe mobility: challenges, methodology and solutions (Vol. 11, pp. 383–405). Emerald Publishing Limited.
  • Zheng, L., Ismail, K., & Meng, X. (2014). Traffic conflict techniques for road safety analysis: open questions and some insights. Canadian Journal of Civil Engineering, 41(7), 633–641.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ulaşım ve Trafik
Bölüm Makaleler
Yazarlar

Erdem Doğan 0000-0001-7802-641X

Ersin Korkmaz 0000-0003-3725-164X

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 27 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 15 Sayı: 3

Kaynak Göster

APA Doğan, E., & Korkmaz, E. (2023). Proaktif Trafik Kaza Risk Değerlendirme Yaklaşımı ve Türkiye İçin Uygulanabilirliğinin Tartışılması. International Journal of Engineering Research and Development, 15(3), 250-256. https://doi.org/10.29137/umagd.1367522
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.