Research Article
BibTex RIS Cite

SCARA TIPI 3D YAZICI TASARIMI VE İMALİ

Year 2024, Volume: 16 Issue: 1, 127 - 140, 31.01.2024
https://doi.org/10.29137/umagd.1371739

Abstract

Bu çalışmada, kinematik ve dinamik analizlere dayalı olarak üç serbestlik dereceli bir SCARA tipi üç boyutlu FDM yazıcı tasarlanmıştır ve imal edilmiştir. Bir SCARA robotunun dinamik yetenekleri ile FDM üretim yöntemi birleştirilmiş ve açık kaynaklı yazılım kullanılarak benzersiz bir yazıcı sistemi elde edilmiştir. Kinematik hesaplamalar, geometrik eşitlikler kullanılarak analitik yöntemlerle gerçekleştirilmiştir. İleri kinematik ve ters kinematik denklemleri kontrol yazılımına girilerek açık döngü kontrol sistemi oluşturulmuştur. Küp ve prizma örneklerinin baskı işlemleri SCARA tipi üç boyutlu yazıcı ile gerçekleştirilmiştir. Analitik hesaplamalardan elde edilen veriler ve deneylerden elde edilen sonuçlar karşılaştırılmış ve istenen ve elde edilen baskılardaki hata oranları ve baskı kalitesine dayalı bulgular paylaşılmıştır. Literatürdeki akademik çalışmalar genellikle SCARA robotlarının dinamik hesaplamalarına, tasarımına ve kontrolüne odaklanmıştır ve özellikle son yıllarda doğa esinli algoritmaların uygulanması üzerinde durulmuştur. Bu çalışmada bir SCARA robotunun hareket kabiliyeti, FDM tipi üç boyutlu yazıcı üretim teknolojisiyle birleştirildiği bir hibrit yazıcı modeli uygulanmıştır. SCARA tipi üç boyutlu yazıcı, kinematik ve kinetik hesaplamalar yapıldıktan sonra üretilmiştir.

References

  • Columbia Electronic Encyclopedia. (2000). Mesolithic period. Columbia University Press. Retrieved 4 April from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=134481279&lang=tr&site=ehost-live
  • Das, M. T., & Canan Dülger, L. (2005). Mathematical modelling, simulation and experimental verification of a scara robot [Article]. Simulation Modelling Practice & Theory, 13(3), 257-271. https://doi.org/10.1016/j.simpat.2004.11.004
  • Fister, D., Fister, I., Jr., Fister, I., & Šafarič, R. (2016). Parameter tuning of PID controller with reactive nature-inspired algorithms [Article]. Robotics & Autonomous Systems, 84, 64-75. https://doi.org/10.1016/j.robot.2016.07.005
  • Gardan, J. (2016). Additive manufacturing technologies: State of the art and trends [Article]. International Journal of Production Research, 54(10), 3118-3132. https://doi.org/10.1080/00207543.2015.1115909
  • Ghaffar, S. H., Corker, J., & Fan, M. (2018). Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in Construction, 93, 1-11. https://doi.org/https://doi.org/10.1016/j.autcon.2018.05.005
  • Kumar, A., & Sharma, R. (2018). Linguistic Lyapunov reinforcement learning control for robotic manipulators. Neurocomputing, 272, 84-95. https://doi.org/https://doi.org/10.1016/j.neucom.2017.06.064
  • Lecklider, T. (2017). 3D printing drives automotive innovation [Article]. EE: Evaluation Engineering, 56(1), 16-19. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=120540149&lang=tr&site=ehost-live
  • Lehoux, P., & Grimard, D. (2018). When robots care: Public deliberations on how technology and humans may support independent living for older adults. Social Science & Medicine, 211, 330-337. https://doi.org/https://doi.org/10.1016/j.socscimed.2018.06.038
  • Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot Manipulator Control: Theory and Practice (2nd ed.). CRC Press. https://doi.org/10.1201/9780203026953
  • Lipton, J. I., Cutler, M., Nigl, F., Cohen, D., & Lipson, H. (2015). Additive manufacturing for the food industry. Trends in Food Science & Technology, 43(1), 114-123. https://doi.org/https://doi.org/10.1016/j.tifs.2015.02.004
  • Poudel, L., Marques, L. G., Williams, R. A., Hyden, Z., Guerra, P., Fowler, O. L., Sha, Z., & Zhou, W. (2022). Toward Swarm Manufacturing: Architecting a Cooperative 3D Printing System. Journal of Manufacturing Science and Engineering, 144(8), 081004.
  • Urrea, C., & Pascal, J. (2018). Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Computers & Electrical Engineering, 67, 791-806. https://doi.org/https://doi.org/10.1016/j.compeleceng.2016.09.004
  • Voglewede, P., Smith, A. H. C., & Monti, A. (2009). Dynamic performance of a SCARA robot manipulator with uncertainty using polynomial chaos theory [Article]. IEEE Transactions on Robotics, 25(1), 206-210. https://doi.org/10.1109/TRO.2008.2006871
  • Weber, D. H., Zhou, W., & Sha, Z. (2022). Z-Chunking for Cooperative 3D Printing of Large and Tall Objects. 2022 International Solid Freeform Fabrication Symposium,
  • Yakout, M., Cadamuro, A., Elbestawi, M., & Veldhuis, S. (2017). The selection of process parameters in additive manufacturing for aerospace alloys [Article]. International Journal of Advanced Manufacturing Technology, 92(5-8), 2081-2098. https://doi.org/10.1007/s00170-017-0280-7
  • Zadpoor, A. A. (2017). Design for additive bio-manufacturing: From patient-specific medical devices to rationally designed meta-biomaterials [Article]. International Journal of Molecular Sciences, 18(8), 1607. https://doi.org/10.3390/ijms18081607

A SCARA-TYPE 3D PRINTER DESIGN AND EXPERIMENTAL VALIDATION

Year 2024, Volume: 16 Issue: 1, 127 - 140, 31.01.2024
https://doi.org/10.29137/umagd.1371739

Abstract

This study designed and produced a Selective Compliance Assembly Robot Arm (SCARA)-type three-dimensional Fused Deposition Modelling (FDM) printer with three degrees of freedom based on kinematic and dynamic analyses. The dynamic capability of a SCARA robot and the FDM production method were combined, and a unique printer system was obtained by using open-source software. The Kinematic Calculations were achieved by analytical methods by using geometrical equations. An open-loop control system was created by inputting forward kinematic and inverse kinematic equations to the control software. The printing processes of the Cube and Prism samples were carried out with the SCARA-type three-dimensional printer. The data obtained from the analytical calculations and the results obtained from the experiments were compared, and the error rates in the desired and obtained prints and findings that were obtained based on print quality were shared. Academic studies on SCARA in the literature have usually focused on the dynamic calculations, design and control of SCARA robots, and especially in recent years, implementation of nature-inspired algorithms. A unique printer system was obtained by using open-source software. Prints were taken from cube and prism samples, and the samples were compared to the data obtained from the analytical results.This study implemented a form of a hybrid printer model where the movement capability of a SCARA robot was combined with FDM-type three-dimensional printer production technology. The SCARA-type three-dimensional printer was produced after making kinematic and kinetic calculations.

References

  • Columbia Electronic Encyclopedia. (2000). Mesolithic period. Columbia University Press. Retrieved 4 April from http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=134481279&lang=tr&site=ehost-live
  • Das, M. T., & Canan Dülger, L. (2005). Mathematical modelling, simulation and experimental verification of a scara robot [Article]. Simulation Modelling Practice & Theory, 13(3), 257-271. https://doi.org/10.1016/j.simpat.2004.11.004
  • Fister, D., Fister, I., Jr., Fister, I., & Šafarič, R. (2016). Parameter tuning of PID controller with reactive nature-inspired algorithms [Article]. Robotics & Autonomous Systems, 84, 64-75. https://doi.org/10.1016/j.robot.2016.07.005
  • Gardan, J. (2016). Additive manufacturing technologies: State of the art and trends [Article]. International Journal of Production Research, 54(10), 3118-3132. https://doi.org/10.1080/00207543.2015.1115909
  • Ghaffar, S. H., Corker, J., & Fan, M. (2018). Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in Construction, 93, 1-11. https://doi.org/https://doi.org/10.1016/j.autcon.2018.05.005
  • Kumar, A., & Sharma, R. (2018). Linguistic Lyapunov reinforcement learning control for robotic manipulators. Neurocomputing, 272, 84-95. https://doi.org/https://doi.org/10.1016/j.neucom.2017.06.064
  • Lecklider, T. (2017). 3D printing drives automotive innovation [Article]. EE: Evaluation Engineering, 56(1), 16-19. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=120540149&lang=tr&site=ehost-live
  • Lehoux, P., & Grimard, D. (2018). When robots care: Public deliberations on how technology and humans may support independent living for older adults. Social Science & Medicine, 211, 330-337. https://doi.org/https://doi.org/10.1016/j.socscimed.2018.06.038
  • Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot Manipulator Control: Theory and Practice (2nd ed.). CRC Press. https://doi.org/10.1201/9780203026953
  • Lipton, J. I., Cutler, M., Nigl, F., Cohen, D., & Lipson, H. (2015). Additive manufacturing for the food industry. Trends in Food Science & Technology, 43(1), 114-123. https://doi.org/https://doi.org/10.1016/j.tifs.2015.02.004
  • Poudel, L., Marques, L. G., Williams, R. A., Hyden, Z., Guerra, P., Fowler, O. L., Sha, Z., & Zhou, W. (2022). Toward Swarm Manufacturing: Architecting a Cooperative 3D Printing System. Journal of Manufacturing Science and Engineering, 144(8), 081004.
  • Urrea, C., & Pascal, J. (2018). Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Computers & Electrical Engineering, 67, 791-806. https://doi.org/https://doi.org/10.1016/j.compeleceng.2016.09.004
  • Voglewede, P., Smith, A. H. C., & Monti, A. (2009). Dynamic performance of a SCARA robot manipulator with uncertainty using polynomial chaos theory [Article]. IEEE Transactions on Robotics, 25(1), 206-210. https://doi.org/10.1109/TRO.2008.2006871
  • Weber, D. H., Zhou, W., & Sha, Z. (2022). Z-Chunking for Cooperative 3D Printing of Large and Tall Objects. 2022 International Solid Freeform Fabrication Symposium,
  • Yakout, M., Cadamuro, A., Elbestawi, M., & Veldhuis, S. (2017). The selection of process parameters in additive manufacturing for aerospace alloys [Article]. International Journal of Advanced Manufacturing Technology, 92(5-8), 2081-2098. https://doi.org/10.1007/s00170-017-0280-7
  • Zadpoor, A. A. (2017). Design for additive bio-manufacturing: From patient-specific medical devices to rationally designed meta-biomaterials [Article]. International Journal of Molecular Sciences, 18(8), 1607. https://doi.org/10.3390/ijms18081607
There are 16 citations in total.

Details

Primary Language English
Subjects Machine Theory and Dynamics
Journal Section Articles
Authors

Ahmet Saygın Öğülmüş 0000-0001-6498-4318

Mustafa Tınkır 0000-0002-9259-308X

Publication Date January 31, 2024
Submission Date October 5, 2023
Published in Issue Year 2024 Volume: 16 Issue: 1

Cite

APA Öğülmüş, A. S., & Tınkır, M. (2024). A SCARA-TYPE 3D PRINTER DESIGN AND EXPERIMENTAL VALIDATION. International Journal of Engineering Research and Development, 16(1), 127-140. https://doi.org/10.29137/umagd.1371739

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.