Araştırma Makalesi
BibTex RIS Kaynak Göster

Liman Çalkantılarının Sayısal Modellemesi

Yıl 2024, Cilt: 16 Sayı: 2, 630 - 645, 30.06.2024
https://doi.org/10.29137/umagd.1242183

Öz

Yumuşak eğim denklemine dayalı olarak geliştirilen iki farklı sayısal model, dalgakıran etrafındaki kırınım ve kıyı yapılarından yansıma kabiliyetini benzeştirmek için karşılaştırmalı olaral incelenmiştir. Modelleme araçları olarak parabolik dalga modeli REF/DIF1 ve eliptik dalga modeli RIDE kullanılmıştır. Her iki sayısal model de Doğu Karadeniz'de bulunan Darıca Balıkçı Limanı'na uygulanmıştır. Limanda rıhtım duvarları, taş dolgu dalgakıranlar ve kızaklar gibi farklı yansıtıcı yapılar kullanılmıştır. REF/DIF-1 modelinin parabolik yaklaşım nedeniyle dalga kırınımını düzgün bir şekilde simüle edemediği sonucuna varılmıştır. Bununla birlikte, RIDE modeli, yansıtıcı yapılardan kaynaklanan güçlü kırınım ve yansımayı başarılı bir şekilde benzeştirebilmektedir.

Kaynakça

  • Balas, L. & İnan, A. (2009). Numerical Modeling of Extended Mild Slope Equation with Modified Mac Cormack Method. Wseas Transactıons On Fluıd Mechanıcs, 4, 14-23.
  • Berkhoff, J.C.W. (1972). Computation of combined refraction–diffraction. In: Proceedings of the 13th International Conference on Coastal Engineering, ASCE, 1, 471–490.
  • Chen, W., Panchang, V. & Demirbilek, Z. (2005). On the modeling of wave–current interaction using the elliptic mild-slope wave equation. Ocean Engineering, 32, 2135-2165.
  • Copeland, G.J.M. (1985). A practical alternatıve to the mild-slope wave equation. Coastal Engineering, 9, 125-149.
  • Dally, W.R., Dean, R.G. & Dalrymple R.A. (1985). Wave height variations across beach. Journal of Geophysical Research, 90, 11,917-11,927.
  • Danish Hydraulic Institute, (2011). MIKE 21 elliptic mild-slope wave module. Holsholm- Denmark. Danish Hydraulic Institute.
  • Deltares, 2013. PHAROS - user & technical manual - version 9.11.19731 Deltares, Delft-Netherlands
  • Hsu T.-W. & Wen C.-C. (2001). A parabolic equation extended to account for rapidly varying topography, Ocean Engineering, 28: 1479–1498.
  • Kaihatu, J.M. (1997). Review and Verification of Numerical Wave Models for Near Coastal Areas - Part 1: Review of Mild Slope Equation, Relevant Approximations, and Technical Details of Numerical Wave Models. Naval Research Laboratory Oceanography Division, Arlington ABD, 1-27.
  • Khellaf, M.C. & Bouhadef, M. (2004). Modified mild slope equation and open boundary conditions. Ocean Engineering, 31, 1713–1723.
  • Kirby, J. T. & Dalrymple, R. A. (1994). Combined Refraction/Diffraction Model REF/DIF 1 Version 2.5 Documentation and User's Manual. Center for Applied Coastal Research Department of Civil Engineering University of Delaware, Newark, CACR Report No. 94-22, 1-172.
  • Lee, C., Park, W. S., Cho, Y. S. & Suh, K. D. (1998). Hyperbolic mild-slope equations extended to account for rapidly varying topography. Coastal Engineering, 34, 243-257.
  • Maa J.P.-Y., Hsu T.-W. and Lee D.-Y. 2002. "The RIDE model: an enhanced computer program for wave transformation", Ocean Engineering, 29, 1441–1458.
  • Mei, C.C. &Tuck E.O. (1980). Forward scattering by thin bodies. SIAM Journal on Applied Mathematics, 39, 178–191. Panchnag. V. & Demirbilek Z. (1998). CGWAVE: A Coastal Surface Water Wave Model of the Mild Slope Equation. US Army Corps of Engineers, Washington.
  • Radder, A.C. (1979). On the parabolic equation method for water-wave propagation. Journal of Fluid Mechanics, 95, 159-176.
  • Suh K.D., Lee C. & Park W.S. (1997). Time-dependent equations for wave propagation on rapidly varying topography, Coastal Engineering, 32: 91-117
  • Telemac Modelling System (2012). Theoretical note and user manual version 6.2 Artemis software wave agitation, France. 1-138
  • Thompson, E.F., Chen, H.S. & Hadley, L.L. (1996). "Validation Of Numerıcal Model For Wind Waves And Swell In Harbors". Journal of Waterway, Port, Coastal, And Ocean Engıneerıng, 122, 245-257.
  • Yue, D.K.P. & Mei, C.C. (1980). Forward Diffraction Of Stokes Waves By A Thin Wedge. Journal of Fluid Mechanics, 99, 33-52.
  • Balas, L., Eğriboyun, O. (2023). Effect of Diffracted Waves on Harbor Resonance. Thalassas 39, 243–261. https://doi.org/10.1007/s41208-022-00501-w
  • U.S. Army Corps of Engineers, (2002), Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (6 volumes).

Numerical Modelling of Harbor Agitation

Yıl 2024, Cilt: 16 Sayı: 2, 630 - 645, 30.06.2024
https://doi.org/10.29137/umagd.1242183

Öz

Two numerical models, developed on the basis of an equation of mild slope, have been compared to analyze the ability of diffraction from breakwaters and reflection from coastal structures. The parabolic wave model REF/DIF1 and the elliptic wave model RIDE are used as the modeling tools. Both numerical models are applied to Darıca Fishery Port located at the Eastern Black Sea of Turkey. Different reflective structures have been used, such as quay walls, rock armor breakwater, and slipways in the port. It has been concluded that REF/DIF-1 model can not simulate wave diffraction properly due to the parabolic approximation. However, the RIDE model can successfully handle strong diffraction and reflection from reflective structures.

Kaynakça

  • Balas, L. & İnan, A. (2009). Numerical Modeling of Extended Mild Slope Equation with Modified Mac Cormack Method. Wseas Transactıons On Fluıd Mechanıcs, 4, 14-23.
  • Berkhoff, J.C.W. (1972). Computation of combined refraction–diffraction. In: Proceedings of the 13th International Conference on Coastal Engineering, ASCE, 1, 471–490.
  • Chen, W., Panchang, V. & Demirbilek, Z. (2005). On the modeling of wave–current interaction using the elliptic mild-slope wave equation. Ocean Engineering, 32, 2135-2165.
  • Copeland, G.J.M. (1985). A practical alternatıve to the mild-slope wave equation. Coastal Engineering, 9, 125-149.
  • Dally, W.R., Dean, R.G. & Dalrymple R.A. (1985). Wave height variations across beach. Journal of Geophysical Research, 90, 11,917-11,927.
  • Danish Hydraulic Institute, (2011). MIKE 21 elliptic mild-slope wave module. Holsholm- Denmark. Danish Hydraulic Institute.
  • Deltares, 2013. PHAROS - user & technical manual - version 9.11.19731 Deltares, Delft-Netherlands
  • Hsu T.-W. & Wen C.-C. (2001). A parabolic equation extended to account for rapidly varying topography, Ocean Engineering, 28: 1479–1498.
  • Kaihatu, J.M. (1997). Review and Verification of Numerical Wave Models for Near Coastal Areas - Part 1: Review of Mild Slope Equation, Relevant Approximations, and Technical Details of Numerical Wave Models. Naval Research Laboratory Oceanography Division, Arlington ABD, 1-27.
  • Khellaf, M.C. & Bouhadef, M. (2004). Modified mild slope equation and open boundary conditions. Ocean Engineering, 31, 1713–1723.
  • Kirby, J. T. & Dalrymple, R. A. (1994). Combined Refraction/Diffraction Model REF/DIF 1 Version 2.5 Documentation and User's Manual. Center for Applied Coastal Research Department of Civil Engineering University of Delaware, Newark, CACR Report No. 94-22, 1-172.
  • Lee, C., Park, W. S., Cho, Y. S. & Suh, K. D. (1998). Hyperbolic mild-slope equations extended to account for rapidly varying topography. Coastal Engineering, 34, 243-257.
  • Maa J.P.-Y., Hsu T.-W. and Lee D.-Y. 2002. "The RIDE model: an enhanced computer program for wave transformation", Ocean Engineering, 29, 1441–1458.
  • Mei, C.C. &Tuck E.O. (1980). Forward scattering by thin bodies. SIAM Journal on Applied Mathematics, 39, 178–191. Panchnag. V. & Demirbilek Z. (1998). CGWAVE: A Coastal Surface Water Wave Model of the Mild Slope Equation. US Army Corps of Engineers, Washington.
  • Radder, A.C. (1979). On the parabolic equation method for water-wave propagation. Journal of Fluid Mechanics, 95, 159-176.
  • Suh K.D., Lee C. & Park W.S. (1997). Time-dependent equations for wave propagation on rapidly varying topography, Coastal Engineering, 32: 91-117
  • Telemac Modelling System (2012). Theoretical note and user manual version 6.2 Artemis software wave agitation, France. 1-138
  • Thompson, E.F., Chen, H.S. & Hadley, L.L. (1996). "Validation Of Numerıcal Model For Wind Waves And Swell In Harbors". Journal of Waterway, Port, Coastal, And Ocean Engıneerıng, 122, 245-257.
  • Yue, D.K.P. & Mei, C.C. (1980). Forward Diffraction Of Stokes Waves By A Thin Wedge. Journal of Fluid Mechanics, 99, 33-52.
  • Balas, L., Eğriboyun, O. (2023). Effect of Diffracted Waves on Harbor Resonance. Thalassas 39, 243–261. https://doi.org/10.1007/s41208-022-00501-w
  • U.S. Army Corps of Engineers, (2002), Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (6 volumes).
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Olcay Eğriboyun 0000-0001-7356-5828

Lale Balas 0000-0003-1916-1237

Erken Görünüm Tarihi 30 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 25 Ocak 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 16 Sayı: 2

Kaynak Göster

APA Eğriboyun, O., & Balas, L. (2024). Numerical Modelling of Harbor Agitation. International Journal of Engineering Research and Development, 16(2), 630-645. https://doi.org/10.29137/umagd.1242183
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.