Review
BibTex RIS Cite

Atık Malzemelerin Epoksi Matrisli Kompozitlerde Katkı Olarak Kullanımına Yönelik Bir İnceleme

Year 2024, Volume: 16 Issue: 2, 621 - 628, 30.06.2024
https://doi.org/10.29137/umagd.1409906

Abstract

Dünya nüfusunun sürekli artması, doğal kaynakların tükenmesine hatta zamanla yok olmasına, atık malzemelerin ise artmasına neden olmaktadır. Atık malzemelerin değerlendirilmesi, hem doğada sınırlı miktarda bulunan kaynakların tüketimini azaltmakta hem de atık malzemelerin çevrede oluşturduğu problemleri en aza indirmektedir. Literatürde, kompozit malzemelerde katkı olarak atık malzemelerin kullanımına yönelik birçok çalışma bildirilmiştir. Tarımsal atıklar, hayvansal atıklar ve tekstil atıkları gibi birçok atık malzemenin kompozit malzemelerde kullanıldığı görülmüştür. Yapılan çalışmalarda atık malzemelerin kompozit malzemelerde kullanılmasının çekme, eğilme, kırılma mukavemeti gibi mekanik özellikler açısından birçok avantaj sağladığı sonucuna varılmıştır.

References

  • Abdulhameed, J.I., Ali, A.H., Kara, İ.H., Mahan, H.M., Konovalov, S.V., & Al-Nedawi, N.M. (2024). Preparing eco-friendly composite from end-life tires and epoxy resin and examining its mechanical, and acoustic insulation properties. International Journal of Nanoelectronics and Materials (IJNeaM), 17(1), 1-5.
  • Adesina, A.Y., Zainelabdeen, I.H., Dalhat, M.A., Mohammed, A.S., Sorour, A.A., & Al-Badou, F.A. (2020). Influence of micronized waste tire rubber on the mechanical and tribological properties of epoxy composite coatings. Tribology International, 146, 106244.
  • Adıbelli, Ü., Mutlu, D., Çakır Yiğit, N., & Karagöz, İ. (2022). Ceviz kabuğu dolgulu epoksi hibrit kompozit malzemelerin hazırlanması ve karakterizasyonu. 10. Uluslararası Lif ve Polimer Araştırmaları Sempozyumu, 13-14 Mayıs 2022, İstanbul.
  • Agunsoye, J.O., Isaac, T.S., & Samuel, S.O. (2012). Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. Journal of Minerals and Materials Characterization and Engineering, 11(8), 774-779.
  • Ahmetli, G., Kocak, N., Dag, M., & Kurbanli, R. (2012). Mechanical and thermal studies on epoxy toluene oligomer-modified epoxy resin/marble waste composites. Polymer Composites, 33(8), 1455-1463.
  • Arivendan, A., Thangiah, W.J.J., Ramakrishnan, S., & Desai, D.A. (2023). Biological waste water hyacinth (Eichhornia crassipes) plant powder particle with eggshell filler-reinforced epoxy polymer composite material property analysis. Journal of Bionic Engineering, 20(3), 1386-1399.
  • Arpitha, G.R., Jain, N., Verma, A., & Madhusudhan, M. (2022). Corncob bio-waste and boron nitride particles reinforced epoxy-based composites for lightweight applications: fabrication and characterization. Biomass Conversion and Biorefinery, 1-8. Ashori, A., & Nourbakhsh, A. (2010). Bio-based composites from waste agricultural residues. Waste Management, 30(4), 680-684.
  • Baccouch, W., Ghith, A., Yalcin-Enis, I., Sezgin, H., Miled, W., Legrand, X., & Faten, F. (2022). Investigation of the mechanical, thermal, and acoustical behaviors of cotton, polyester, and cotton/polyester nonwoven wastes reinforced epoxy composites. Journal of Industrial Textiles, 51(6), 876-899.
  • Baffour-Awuah, E., Akinlabi, S.A., Jen, T.C., Hassan, S., Okokpujie, I.P., & Ishola, F. (2021). Characteristics of palm kernel shell and palm kernel shell-polymer composites: A review. IOP Conference Series: Materials Science and Engineering, 1107(1), 12090.
  • Bahçe, H.T., & Temiz, Ş. (2019). Vakum infüzyon yöntemi ile üretilen kayısı çekirdeği kabuğu tozu katkılı tabakalı kompozitlerin kıyaslanması. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 5(2), 125-146.
  • Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11.
  • Belmares, H., Barrera, A., Castillo, E., Verheugen, E., Monjaras, M., Patfoort, G.A., & Bucquoye, M.E. (1981). New composite materials from natural hard fibers. Industrial & Engineering Chemistry Product Research and Development, 20(3), 555-561.
  • Büyükkaya K. (2019). Examining the breaking and bending behaviors of the polymethylmetacrylate composites reinforced with hazelnut shell powder. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 20(2), 1-8.
  • Chanap, R. (2012). Study of mechanical and flexural properties of coconut shell ash reinforced epoxy composites. National Institute of Technology Rourkela, 5(7), 41.
  • Chyad, F.A. (2011). The effect of waste ceramic materials (Iraqi stones dust powders) on the mechanical properties of epoxy resin. Engineering & Technology Journal, 29(16).
  • Çemrek, Ş. (2011). Kayısı çekirdeği ve kestane kabuklarının alternatif enerji kaynağı olarak değerlendirilmesi. (Yayımlanmamış Yüksek Lisans Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • De Rosa, I.M., Santulli, C., & Sarasini, F. (2011). Mechanical characterization of untreated waste office paper/woven jute fabric hybrid reinforced epoxy composites. Journal of Applied Polymer Science, 119(3), 1366-1373.
  • Ghavami, K., Toledo Filho, R.D., & Barbosa, N.P. (1999). Behaviour of composite soil reinforced with natural fibres. Cement and Concrete Composites, 21(1), 39-48.
  • Herrera-Franco, P., Valadez-Gonzalez, A., & Cervantes-Uc, M. (1997). Development and characterization of a HDPE-sand-natural fiber composite. Composites Part B: Engineering, 28(3), 331-343.
  • Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., & Thomas, S. (2006). Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66(15), 2719-2725.
  • Jacob, M., Thomas, S., & Varughese, K.T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7-8), 955-965.
  • Ji, G., Zhu, H., Jiang, X., Qi, C., & Zhang, X.M. (2009). Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders. Journal of Applied Polymer Science, 114(5), 3168-3176.
  • Keong, G.C., Walad, M.H.B.M., Xiong, O.W., Haikel, M.N., Ling, C.H., Ravichandran, R.K.S.O., Kiang, L.T., & Hing, T.L. (2017). A study on mechanical properties and leaching behaviour of municipal solid waste (MSW) ıncineration ash/epoxy composites. Energy Procedia, 143, 448-453.
  • Kocaman, S. (2019). Farklı kimyasallarla modifiye edilen doğal atık takviyeli epoksi reçine matrisli kompozitlerin hazırlanması ve karakterizasyonu. International Journal of Engineering Research and Development, 11(1), 77-86.
  • Koçhan, C. (2019). Mechanical properties of waste mussel shell particles reinforced epoxy composites. Materials Testing, 61(2), 149-154.
  • Koçhan, C. (2020). Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 599-604.
  • Kozak, M. (2010). Tekstil atıkların yapı malzemesi olarak kullanım alanlarının araştırılması. Yapı Teknolojileri Elektronik Dergisi, 6(1), 62-70.
  • Kumar, D., Boopathy, S.R., Sangeetha, D., & Bharathiraja, G. (2017). Investigation of mechanical properties of horn powder-filled epoxy composites/Raziskava mehanskih lastnosti epoksi kompozitov s polnilom iz rozevine v prahu. Strojniski Vestnik-Journal of Mechanical Engineering, 63(2), 138-148.
  • Kurnaz, M., & Oktay, B.M. (2017). Ekolojik malzemeler kullanarak üretilen ısı yalıtım levhalarının özelliklerinin incelenmesi. International Journal of Multidisciplinary Studies and Innovative Technologies, 1(1), 15-17.
  • Lakshumu Naidu, A., & Kona, S. (2018). Experimental Study of the Mechanical Properties of Banana Fiber and Groundnut Shell Ash Reinforced Epoxy Hybrid Composite. International Journal of Engineering, Transactions A: Basics, 31(4), 659–665. https://doi.org/10.5829/ije.2018.31.04a.18.
  • Lee, S., Kim, Y.T., Lin, K.Y.A., & Lee, J. (2023). Plastic-waste-derived char as an additive for epoxy composite. Materials, 16(7), 2602.
  • Luo, S., & Netravali, A.N. (1999). Mechanical and thermal properties of environment‐friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate‐co‐valerate) resin. Polymer Composites, 20(3), 367-378.
  • Mishra, S.C., Nayak, N.B., & Satapathy, A. (2010). Investigation on bio-waste reinforced epoxy composites. Journal of Reinforced Plastics and Composites, 29(19), 3016-3020.
  • Nagarajan, K.J., Balaji, A.N., Basha, K.S., Ramanujam, N.R., & Kumar, R.A. (2020). Effect of agro waste α-cellulosic micro filler on mechanical and thermal behavior of epoxy composites. International Journal of Biological Macromolecules, 152, 327-339.
  • Nam, G., Kim, J., & Song, J.I. (2019). Mechanical performance of bio-waste-filled carbon fabric/epoxy composites. Polymer Composites, 40(2), 1504-1511.
  • Panneerdhass, R., Gnanavelbabu, A., & Rajkumar, K. (2014). Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Engineering, 97, 2042-2051.
  • Prabhakar, M.N., Shah, A.U.R., Rao, K.C., & Song, J.I. (2015). Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers and Polymers, 16(5), 1119-1124.
  • Pranay, V., Ojha, S., Raghavendra, G., Dheeraj, G., & Anjali, A. (2022). Evaluation of mechanical and tribological properties of biowaste and biowaste based silica particulate epoxy composites. Silicon, 14(8), 4367-4374.
  • Prithivirajan, R., Jayabal, S., & Bharathiraja, G. (2015). Bio-based composites from waste agricultural residues: Mechanical and morphological properties. Cellulose Chemistry and Technology, 49(1), 65-68.
  • Rahman, M.U., & Li, J. (2023). Influence of waste filler on the mechanical properties and microstructure of epoxy mortar. Applied Sciences, 13(11), 6857.
  • Rajan, S.T.K., Nagarajan, K.J., Balasubramani, V., Sathickbasha, K., Sanjay, M.R., Siengchin, S., & Balaji, A.N. (2023). Investigation of mechanical and thermo-mechanical characteristics of silane-treated cellulose nanofibers from agricultural waste reinforced epoxy adhesive composites. International Journal of Adhesion and Adhesives, 126, 103492.
  • Sajith, S., Arumugam, V., & Dhakal, H.N. (2017). Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polymer Testing, 58, 60-69.
  • Salasinska, K., Barczewski, M., Górny, R., & Kloziński, A. (2018). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528.
  • Salleh, Z., Islam, M.M., Yusop, M.Y.M., & Idrus, M.M.A.M. (2014). Mechanical properties of activated carbon (AC) coconut shell reinforced polypropylene composites encapsulated with epoxy resin. APCBEE Procedia, 9(Icbee 2013), 92-96.
  • Sapuan, S.M., Harimiand, M., & Maleque, M.A. (2003). Mechanical properties of epoxy/coconut shell filler particle composites. Arabian Journal for Science and Engineering, 28(2), 171-182.
  • Shakuntala, O., Raghavendra, G., & Samir Kumar, A. (2014). Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite. Advances in Materials Science and Engineering, 2014.
  • Sharma, H., Singh, I., & Misra, J.P. (2021). Effect of particle size on physical, thermal and mechanical behaviour of epoxy composites reinforced with food waste fillers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(16), 3029-3035.
  • Shivamurthy, B., Murthy, K., Joseph, P.C., Rishi, K., Bhat, K.U., & Anandhan, S. (2015). Mechanical properties and sliding wear behavior of jatropha seed cake waste/epoxy composites. Journal of Material Cycles and Waste Management, 17(1), 144-156.
  • Silva, F.S., Ribeiro, C.E.G., & Rodriguez, R.J.S. (2018). Physical and mechanical characterization of artificial stone with marble calcite waste and epoxy resin. Materials Research, 21(1), 1-6.
  • Silva, T.H., Mesquita-Guimarães, J., Henriques, B., Silva, F.S., & Fredel, M.C. (2019). The potential use of oyster shell waste in new value-added by-product. Resources, 8(1), 13.
  • Singh, T., Tejyan, S., Patnaik, A., Singh, V., Zsoldos, I., & Fekete, G. (2019). Fabrication of waste bagasse fiber-reinforced epoxy composites: Study of physical, mechanical, and erosion properties. Polymer Composites, 40(9), 3777-3786.
  • Somashekhar, T.M., Naik, P., Nayak, V., Mallikappa, & Rahul, S. (2018). Study of mechanical properties of coconut shell powder and tamarind shell powder reinforced with epoxy composites. IOP Conference Series: Materials Science and Engineering, 376(1), 12105.
  • Souza, A.M., Nascimento, M.F., Almeida, D.H., Silva, D.A.L., Almeida, T.H., Christoforo, A.L., & Lahr, F.A. (2018). Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: A cleaner production alternative. Journal of Cleaner Production, 193, 549-562.
  • Şahin, Y. (2022). Kompozit Malzemelere Giriş, 4. baskı. Ankara, Seçkin Yayıncılık. Temiz, M., Kocaman, S., & Ahmetli, G. (2023). Evaluation of EPDM waste in environmentally friendly epoxy hybrid composites. Journal of Industrial and Engineering Chemistry. Toro, P., Quijada, R., Arias, J.L., & Yazdani‐Pedram, M. (2007a). Mechanical and morphological studies of poly (propylene)‐filled eggshell composites. Macromolecular Materials and Engineering, 292(9), 1027-1034.
  • Toro, P., Quijada, R., Yazdani-Pedram, M., & Arias, J.L. (2007b). Eggshell, a new bio-filler for polypropylene composites. Materials Letters, 61(22), 4347-4350.
  • Üçgül, İ., & Turak, B. (2015). Tekstil katı atıklarının geri dönüşümü ve yalıtım malzemesi olarak değerlendirilmesi. Academic Platform-Journal of Engineering and Science, 3(3).
  • Url-1 https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2022-49570, 16.12.2023 tarihinde erişildi.
  • Yaldizci, E.Ş. (2016). Kumaş atıklarının polyester esaslı kompozit malzeme üretiminde değerlendirilmesi. Yüksek Lisans Tezi. Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş.
  • Yawas, D.S., Sumaila, M., Sarki, J., & Samuel, B.O. (2023). Manufacturing and optimization of the mechanical properties (tensile strength, flexural strength, and impact energy) of a chicken feather/egg shell/kaolin hybrid reinforced epoxy composite using the Taguchi technique. The International Journal of Advanced Manufacturing Technology, 1-16.
  • Yousef, S., Tatariants, M., Bendikiene, R., & Denafas, G. (2017). Mechanical and thermal characterizations of non-metallic components recycled from waste printed circuit boards. Journal of Cleaner Production, 167, 271-280.

A Review on the Use of Waste Materials as Additives in Epoxy Matrix Composites

Year 2024, Volume: 16 Issue: 2, 621 - 628, 30.06.2024
https://doi.org/10.29137/umagd.1409906

Abstract

Natural resources gradually become more scarce and eventually destroyed due to global population growth, while waste materials also accumulate. By using waste materials, one can lessen the amount of finite resources consumed as well as the environmental issues that waste items raise. The literature has published numerous studies on the utilization of waste materials as additives in composite materials. It has been observed that a variety of waste products, including textile, animal, and agricultural waste, are utilized to create composite materials. According to studies, there are numerous benefits to using waste materials in composite materials when it comes to mechanical qualities like tensile, bending, and fracture strength.

References

  • Abdulhameed, J.I., Ali, A.H., Kara, İ.H., Mahan, H.M., Konovalov, S.V., & Al-Nedawi, N.M. (2024). Preparing eco-friendly composite from end-life tires and epoxy resin and examining its mechanical, and acoustic insulation properties. International Journal of Nanoelectronics and Materials (IJNeaM), 17(1), 1-5.
  • Adesina, A.Y., Zainelabdeen, I.H., Dalhat, M.A., Mohammed, A.S., Sorour, A.A., & Al-Badou, F.A. (2020). Influence of micronized waste tire rubber on the mechanical and tribological properties of epoxy composite coatings. Tribology International, 146, 106244.
  • Adıbelli, Ü., Mutlu, D., Çakır Yiğit, N., & Karagöz, İ. (2022). Ceviz kabuğu dolgulu epoksi hibrit kompozit malzemelerin hazırlanması ve karakterizasyonu. 10. Uluslararası Lif ve Polimer Araştırmaları Sempozyumu, 13-14 Mayıs 2022, İstanbul.
  • Agunsoye, J.O., Isaac, T.S., & Samuel, S.O. (2012). Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. Journal of Minerals and Materials Characterization and Engineering, 11(8), 774-779.
  • Ahmetli, G., Kocak, N., Dag, M., & Kurbanli, R. (2012). Mechanical and thermal studies on epoxy toluene oligomer-modified epoxy resin/marble waste composites. Polymer Composites, 33(8), 1455-1463.
  • Arivendan, A., Thangiah, W.J.J., Ramakrishnan, S., & Desai, D.A. (2023). Biological waste water hyacinth (Eichhornia crassipes) plant powder particle with eggshell filler-reinforced epoxy polymer composite material property analysis. Journal of Bionic Engineering, 20(3), 1386-1399.
  • Arpitha, G.R., Jain, N., Verma, A., & Madhusudhan, M. (2022). Corncob bio-waste and boron nitride particles reinforced epoxy-based composites for lightweight applications: fabrication and characterization. Biomass Conversion and Biorefinery, 1-8. Ashori, A., & Nourbakhsh, A. (2010). Bio-based composites from waste agricultural residues. Waste Management, 30(4), 680-684.
  • Baccouch, W., Ghith, A., Yalcin-Enis, I., Sezgin, H., Miled, W., Legrand, X., & Faten, F. (2022). Investigation of the mechanical, thermal, and acoustical behaviors of cotton, polyester, and cotton/polyester nonwoven wastes reinforced epoxy composites. Journal of Industrial Textiles, 51(6), 876-899.
  • Baffour-Awuah, E., Akinlabi, S.A., Jen, T.C., Hassan, S., Okokpujie, I.P., & Ishola, F. (2021). Characteristics of palm kernel shell and palm kernel shell-polymer composites: A review. IOP Conference Series: Materials Science and Engineering, 1107(1), 12090.
  • Bahçe, H.T., & Temiz, Ş. (2019). Vakum infüzyon yöntemi ile üretilen kayısı çekirdeği kabuğu tozu katkılı tabakalı kompozitlerin kıyaslanması. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 5(2), 125-146.
  • Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11.
  • Belmares, H., Barrera, A., Castillo, E., Verheugen, E., Monjaras, M., Patfoort, G.A., & Bucquoye, M.E. (1981). New composite materials from natural hard fibers. Industrial & Engineering Chemistry Product Research and Development, 20(3), 555-561.
  • Büyükkaya K. (2019). Examining the breaking and bending behaviors of the polymethylmetacrylate composites reinforced with hazelnut shell powder. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 20(2), 1-8.
  • Chanap, R. (2012). Study of mechanical and flexural properties of coconut shell ash reinforced epoxy composites. National Institute of Technology Rourkela, 5(7), 41.
  • Chyad, F.A. (2011). The effect of waste ceramic materials (Iraqi stones dust powders) on the mechanical properties of epoxy resin. Engineering & Technology Journal, 29(16).
  • Çemrek, Ş. (2011). Kayısı çekirdeği ve kestane kabuklarının alternatif enerji kaynağı olarak değerlendirilmesi. (Yayımlanmamış Yüksek Lisans Tezi). Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • De Rosa, I.M., Santulli, C., & Sarasini, F. (2011). Mechanical characterization of untreated waste office paper/woven jute fabric hybrid reinforced epoxy composites. Journal of Applied Polymer Science, 119(3), 1366-1373.
  • Ghavami, K., Toledo Filho, R.D., & Barbosa, N.P. (1999). Behaviour of composite soil reinforced with natural fibres. Cement and Concrete Composites, 21(1), 39-48.
  • Herrera-Franco, P., Valadez-Gonzalez, A., & Cervantes-Uc, M. (1997). Development and characterization of a HDPE-sand-natural fiber composite. Composites Part B: Engineering, 28(3), 331-343.
  • Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., & Thomas, S. (2006). Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66(15), 2719-2725.
  • Jacob, M., Thomas, S., & Varughese, K.T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64(7-8), 955-965.
  • Ji, G., Zhu, H., Jiang, X., Qi, C., & Zhang, X.M. (2009). Mechanical strengths of epoxy resin composites reinforced by calcined pearl shell powders. Journal of Applied Polymer Science, 114(5), 3168-3176.
  • Keong, G.C., Walad, M.H.B.M., Xiong, O.W., Haikel, M.N., Ling, C.H., Ravichandran, R.K.S.O., Kiang, L.T., & Hing, T.L. (2017). A study on mechanical properties and leaching behaviour of municipal solid waste (MSW) ıncineration ash/epoxy composites. Energy Procedia, 143, 448-453.
  • Kocaman, S. (2019). Farklı kimyasallarla modifiye edilen doğal atık takviyeli epoksi reçine matrisli kompozitlerin hazırlanması ve karakterizasyonu. International Journal of Engineering Research and Development, 11(1), 77-86.
  • Koçhan, C. (2019). Mechanical properties of waste mussel shell particles reinforced epoxy composites. Materials Testing, 61(2), 149-154.
  • Koçhan, C. (2020). Midye kabuğu/epoksi parçacık takviyeli kompozitin mode-I kırılma tokluğunun deneysel olarak incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(4), 599-604.
  • Kozak, M. (2010). Tekstil atıkların yapı malzemesi olarak kullanım alanlarının araştırılması. Yapı Teknolojileri Elektronik Dergisi, 6(1), 62-70.
  • Kumar, D., Boopathy, S.R., Sangeetha, D., & Bharathiraja, G. (2017). Investigation of mechanical properties of horn powder-filled epoxy composites/Raziskava mehanskih lastnosti epoksi kompozitov s polnilom iz rozevine v prahu. Strojniski Vestnik-Journal of Mechanical Engineering, 63(2), 138-148.
  • Kurnaz, M., & Oktay, B.M. (2017). Ekolojik malzemeler kullanarak üretilen ısı yalıtım levhalarının özelliklerinin incelenmesi. International Journal of Multidisciplinary Studies and Innovative Technologies, 1(1), 15-17.
  • Lakshumu Naidu, A., & Kona, S. (2018). Experimental Study of the Mechanical Properties of Banana Fiber and Groundnut Shell Ash Reinforced Epoxy Hybrid Composite. International Journal of Engineering, Transactions A: Basics, 31(4), 659–665. https://doi.org/10.5829/ije.2018.31.04a.18.
  • Lee, S., Kim, Y.T., Lin, K.Y.A., & Lee, J. (2023). Plastic-waste-derived char as an additive for epoxy composite. Materials, 16(7), 2602.
  • Luo, S., & Netravali, A.N. (1999). Mechanical and thermal properties of environment‐friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate‐co‐valerate) resin. Polymer Composites, 20(3), 367-378.
  • Mishra, S.C., Nayak, N.B., & Satapathy, A. (2010). Investigation on bio-waste reinforced epoxy composites. Journal of Reinforced Plastics and Composites, 29(19), 3016-3020.
  • Nagarajan, K.J., Balaji, A.N., Basha, K.S., Ramanujam, N.R., & Kumar, R.A. (2020). Effect of agro waste α-cellulosic micro filler on mechanical and thermal behavior of epoxy composites. International Journal of Biological Macromolecules, 152, 327-339.
  • Nam, G., Kim, J., & Song, J.I. (2019). Mechanical performance of bio-waste-filled carbon fabric/epoxy composites. Polymer Composites, 40(2), 1504-1511.
  • Panneerdhass, R., Gnanavelbabu, A., & Rajkumar, K. (2014). Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Engineering, 97, 2042-2051.
  • Prabhakar, M.N., Shah, A.U.R., Rao, K.C., & Song, J.I. (2015). Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers and Polymers, 16(5), 1119-1124.
  • Pranay, V., Ojha, S., Raghavendra, G., Dheeraj, G., & Anjali, A. (2022). Evaluation of mechanical and tribological properties of biowaste and biowaste based silica particulate epoxy composites. Silicon, 14(8), 4367-4374.
  • Prithivirajan, R., Jayabal, S., & Bharathiraja, G. (2015). Bio-based composites from waste agricultural residues: Mechanical and morphological properties. Cellulose Chemistry and Technology, 49(1), 65-68.
  • Rahman, M.U., & Li, J. (2023). Influence of waste filler on the mechanical properties and microstructure of epoxy mortar. Applied Sciences, 13(11), 6857.
  • Rajan, S.T.K., Nagarajan, K.J., Balasubramani, V., Sathickbasha, K., Sanjay, M.R., Siengchin, S., & Balaji, A.N. (2023). Investigation of mechanical and thermo-mechanical characteristics of silane-treated cellulose nanofibers from agricultural waste reinforced epoxy adhesive composites. International Journal of Adhesion and Adhesives, 126, 103492.
  • Sajith, S., Arumugam, V., & Dhakal, H.N. (2017). Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polymer Testing, 58, 60-69.
  • Salasinska, K., Barczewski, M., Górny, R., & Kloziński, A. (2018). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528.
  • Salleh, Z., Islam, M.M., Yusop, M.Y.M., & Idrus, M.M.A.M. (2014). Mechanical properties of activated carbon (AC) coconut shell reinforced polypropylene composites encapsulated with epoxy resin. APCBEE Procedia, 9(Icbee 2013), 92-96.
  • Sapuan, S.M., Harimiand, M., & Maleque, M.A. (2003). Mechanical properties of epoxy/coconut shell filler particle composites. Arabian Journal for Science and Engineering, 28(2), 171-182.
  • Shakuntala, O., Raghavendra, G., & Samir Kumar, A. (2014). Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite. Advances in Materials Science and Engineering, 2014.
  • Sharma, H., Singh, I., & Misra, J.P. (2021). Effect of particle size on physical, thermal and mechanical behaviour of epoxy composites reinforced with food waste fillers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(16), 3029-3035.
  • Shivamurthy, B., Murthy, K., Joseph, P.C., Rishi, K., Bhat, K.U., & Anandhan, S. (2015). Mechanical properties and sliding wear behavior of jatropha seed cake waste/epoxy composites. Journal of Material Cycles and Waste Management, 17(1), 144-156.
  • Silva, F.S., Ribeiro, C.E.G., & Rodriguez, R.J.S. (2018). Physical and mechanical characterization of artificial stone with marble calcite waste and epoxy resin. Materials Research, 21(1), 1-6.
  • Silva, T.H., Mesquita-Guimarães, J., Henriques, B., Silva, F.S., & Fredel, M.C. (2019). The potential use of oyster shell waste in new value-added by-product. Resources, 8(1), 13.
  • Singh, T., Tejyan, S., Patnaik, A., Singh, V., Zsoldos, I., & Fekete, G. (2019). Fabrication of waste bagasse fiber-reinforced epoxy composites: Study of physical, mechanical, and erosion properties. Polymer Composites, 40(9), 3777-3786.
  • Somashekhar, T.M., Naik, P., Nayak, V., Mallikappa, & Rahul, S. (2018). Study of mechanical properties of coconut shell powder and tamarind shell powder reinforced with epoxy composites. IOP Conference Series: Materials Science and Engineering, 376(1), 12105.
  • Souza, A.M., Nascimento, M.F., Almeida, D.H., Silva, D.A.L., Almeida, T.H., Christoforo, A.L., & Lahr, F.A. (2018). Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: A cleaner production alternative. Journal of Cleaner Production, 193, 549-562.
  • Şahin, Y. (2022). Kompozit Malzemelere Giriş, 4. baskı. Ankara, Seçkin Yayıncılık. Temiz, M., Kocaman, S., & Ahmetli, G. (2023). Evaluation of EPDM waste in environmentally friendly epoxy hybrid composites. Journal of Industrial and Engineering Chemistry. Toro, P., Quijada, R., Arias, J.L., & Yazdani‐Pedram, M. (2007a). Mechanical and morphological studies of poly (propylene)‐filled eggshell composites. Macromolecular Materials and Engineering, 292(9), 1027-1034.
  • Toro, P., Quijada, R., Yazdani-Pedram, M., & Arias, J.L. (2007b). Eggshell, a new bio-filler for polypropylene composites. Materials Letters, 61(22), 4347-4350.
  • Üçgül, İ., & Turak, B. (2015). Tekstil katı atıklarının geri dönüşümü ve yalıtım malzemesi olarak değerlendirilmesi. Academic Platform-Journal of Engineering and Science, 3(3).
  • Url-1 https://data.tuik.gov.tr/Bulten/Index?p=Atik-Istatistikleri-2022-49570, 16.12.2023 tarihinde erişildi.
  • Yaldizci, E.Ş. (2016). Kumaş atıklarının polyester esaslı kompozit malzeme üretiminde değerlendirilmesi. Yüksek Lisans Tezi. Kahramanmaraş Sütçü İmam Üniversitesi, Kahramanmaraş.
  • Yawas, D.S., Sumaila, M., Sarki, J., & Samuel, B.O. (2023). Manufacturing and optimization of the mechanical properties (tensile strength, flexural strength, and impact energy) of a chicken feather/egg shell/kaolin hybrid reinforced epoxy composite using the Taguchi technique. The International Journal of Advanced Manufacturing Technology, 1-16.
  • Yousef, S., Tatariants, M., Bendikiene, R., & Denafas, G. (2017). Mechanical and thermal characterizations of non-metallic components recycled from waste printed circuit boards. Journal of Cleaner Production, 167, 271-280.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Composite and Hybrid Materials
Journal Section Articles
Authors

Lutuf Ertürk 0000-0002-2591-9094

Sakine Kıratlı 0000-0001-6292-5605

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date December 25, 2023
Acceptance Date February 19, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Ertürk, L., & Kıratlı, S. (2024). Atık Malzemelerin Epoksi Matrisli Kompozitlerde Katkı Olarak Kullanımına Yönelik Bir İnceleme. International Journal of Engineering Research and Development, 16(2), 621-628. https://doi.org/10.29137/umagd.1409906

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.