Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Analysis of the Technical Properties of Marble, Granite and Composite Quartz Kitchen Countertops

Yıl 2024, Cilt: 16 Sayı: 2, 814 - 832, 30.06.2024
https://doi.org/10.29137/umagd.1464925

Öz

Kitchen countertops are considered as essential fixtures within kitchen spaces. Natural stones such as marble and granite, as well as engineered materials like quartz composite countertops, are commonly utilized in kitchen countertops. In the conducted study, three samples each of frequently used granite, marble, and quartz composite countertops were selected and their technical specifications were compared. Marble samples included Marmara Beige, Söğüt Beige, and Bilecik Beige; granite samples comprised Ankara Fume, Aksaray Yaylak, and Hisar Gray; while quartz composite countertop samples were obtained from three different brands. Mineralogical phase analyses of countertop samples were performed using XRD, and microstructure analyses were conducted through SEM. Porosity, water absorption, and density values were measured according to the Archimedes principle; impact resistance was evaluated based on TS-EN 14617-9 standard; and chemical resistances were determined in compliance with EN 14617-10 standard. Results indicated that marble exhibited the lowest impact and chemical resistance, while composite quartz showcased the highest impact and chemical resistance. Among the countertop samples, the Q-3 coded quartz composite countertop displayed the lowest bulk density, water absorption, and porosity values. Generally, granite samples exhibited the highest water absorption and apparent porosity values.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

123M722 TÜBİTAK

Kaynakça

  • Alperen, A. N., Çelik, H., Bağcı, M. (2022). Uşak-Karahallı Mermerlerinin Fiziko-Mekanik Özelliklerinin Mineralojik-Petrografik Özellikleri ile Birlikte Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 22(045801), 911–924
  • Alperen, A. N., Çelik, H., Bağcı, M. (2023). Sivaslı (Uşak) Yöresi Mermerlerinin Mühendislik Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2023, 1293–1306
  • Akbulut, Z. F. (2022). Experimental investigation of the surface properties of accidental stained carbonate natural stones. Case Studies in Construction Materials, 17. https://doi.org/10.1016/j.cscm.2022.e01626
  • Arıcı, E., Ölmez, D., Özkan, M., Topçu, N., Çapraz, F., Deniz, G., Altınyay, A. (2019). Kuvars yüzeylerde mekanik dayanım ve yüzey özelliklerinin iyileştirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19, 326–332
  • Bozdağ, A. (2020). Doğal yapı taşlarının fiziko mekanik özellikleriyle böhme aşınma direncinin tahmini. 8(4), 1062–1071
  • Çelı̇k, M. Y., & İbrahimoglu, A. (2021). Characterization of travertine stones from Turkey and assessment of their durability to salt crystallization. Journal of Building Engineering, 43. https://doi.org/10.1016/j.jobe.2021.102592
  • Chaki, S., Takarli, M., Agbodjan, W. P. (2008). Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22, 1456–1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002
  • Cruz Silva, T. L. D., Carvalho, E. A. S., Barreto, S. G. N., Perim da Silva, T. B., Demartini, T. J. C., et al. (2023). Characterization of artificial stone developed with granite waste and glass waste in epoxy matrix. Journal of Materials Research and Technology, 26, 2528–2538. https://doi.org/10.1016/j.jmrt.2023.08.045
  • Delle Piane, C., Arena, A., Sarout, J., Esteban, L., Cazes, E. (2015). Micro-crack enhanced permeability in tight rocks: An experimental and microstructural study. Tectonophysics, 665, 149–156. https://doi.org/10.1016/j.tecto.2015.10.001
  • Ding, Q.-L., Ju, F., Song, S.-B., Yu, B.-Y., Ma, D. (2016). An experimental study of fractured sandstone permeability after high-temperature treatment under different confining pressures. Journal of Natural Gas Science and Engineering, 34, 55–63. https://doi.org/10.1016/j.jngse.2016.06.034
  • Ding, Q.-L., Wang, P., Cheng, Z. (2021). Permeability evolution of fractured granite after exposure to different high-temperature treatments. Journal of Petroleum Science and Engineering, 208, 109632. https://doi.org/10.1016/j.petrol.2021.109632
  • Dellaloğlu, B. (2002). Konut mutfaklarında kullanılan tezgâhların fiziksel, mekaniksel ve teknolojik özelliklerinin belirlenmesi (Yüksek Lisans Tezi). Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ağaç İşleri Endüstri Mühendisliği Anabilim Dalı.
  • Fortune Business Insights. (n.d.). Countertop Market. https://www.fortunebusinessinsights.com/industry-reports/countertop-market-101539
  • Ferreira, C., Silva, A., de Brito, J., Dias, I. S., Flores-Colen, I. (2021). Definition of a condition-based model for natural stone claddings. Journal of Building Engineering, 33. https://doi.org/10.1016/j.jobe.2020.101643
  • Hasan, R., & Reza, M. T. (2018). Hydrothermal deformation of Marcellus shale: Effects of subcritical water temperature and holding time on shale porosity and surface morphology. Journal of Petroleum Science and Engineering, 172, 383-390. https://doi.org/10.1016/j.petrol.2018.09.078
  • Huang, Z., Zeng, W., Gu, Q., Wu, Y., Zhong, W., Zhao, K. (2021). Investigations of variations in physical and mechanical properties of granite, sandstone, and marble after temperature and acid solution treatments. Construction and Building Materials, 307, 124943. https://doi.org/10.1016/j.conbuildmat.2021.124943
  • Jinwen Wu, Jingwu Gao, Zijun Feng, Shuping Chen, Taoyi Nie. (2020). Investigation of fracture process zone properties of mode I fracture in heat-treated granite through digital image correlation. Engineering Fracture Mechanics, 235, 107192. https://doi.org/10.1016/j.engfracmech.2020.107192
  • Junique, T., Vázquez, P., Géraud, Y., Thomachot-Schneider, C., Sidibé, H. (2021). Microstructural evolution of granitic stones exposed to different thermal regimes analysed by infrared thermography. Engineering Geology, 286, 106057. https://doi.org/10.1016/j.enggeo.2021.106057
  • Junique, T., Vazquez, P., Benavente, D., Thomachot-Schneider, C., Géraud, Y. (2021). Experimental investigation of the effect of quenching cycles on the physico-chemical properties of granites. Geothermics, 97, 102235. https://doi.org/10.1016/j.geothermics.2021.102235
  • Li, D., Ma, J., Wan, Q., Zhu, Q., Han, Z. (2021). Effect of thermal treatment on the fracture toughness and subcritical crack growth of granite in double-torsion test. Engineering Fracture Mechanics, 253. https://doi.org/10.1016/j.engfracmech.2021.107903
  • Li, H., Yang, D., Zhong, Z., Sheng, Y., Liu, X. (2018). Micro damage evolution and macro-mechanical property degradation of limestone due to chemical effects. International Journal of Rock Mechanics and Mining Sciences, 110, 257–265. https://doi.org/10.1016/j.ijrmms.2018.07.011
  • Li, H., Zhu, Z., Liu, X., Sheng, Y., Yang, D. (2018). Experimental investigation on the micro damage evolution of chemical corroded limestone subjected to cyclic loads. International Journal of Fatigue, 113, 23–32
  • Li, S., Huo, R., Wang, B., Ren, Z., Ding, Y., Qian, M., Qiu, T. (2018). Experimental study on physicomechanical properties of sandstone under acidic environment. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/5784831
  • Li, J., Kaunda, R. B., Zhu, L., Zhou, K., Gao, F. (2019). Experimental study of the pore structure deterioration of sandstones under freeze-thaw cycles and chemical erosion. Advances in Civil Engineering. https://doi.org/10.1155/2019/9687843
  • Li, N., Zhang, Z., Su, B., Gunter, S. (2003). A chemical damage model of sandstone in acid solution. International Journal of Rock Mechanics and Mining Sciences, 40, 243–249. https://doi.org/10.1016/S1365-1609(02)00132-6
  • Lam Dos Santos, J. P., Rosa, L. G., Amaral, P. M. (2011). Temperature effects on mechanical behaviour of engineered stones. Constr Build Mater, 25(1), 171–174. https://doi.org/10.1016/j.conbuildmat.2010.06.042
  • Martin, R. F., Schumann, D., Dharmapriya, P. L. (2022). Dolomitic Marble in a Context of UHT Metamorphism: Possible Signs of Melting, Lenadora Quarry, Sri Lanka. Journal of Petrology, 63(7), egac057
  • Miao, S., Cai, M., Guo, Q., Wang, P., Liang, M. (2016). Damage effects and mechanisms in granite treated with acidic chemical solutions. International Journal of Rock Mechanics and Mining Sciences, 88, 77–86. https://doi.org/10.1016/j.ijrmms.2016.07.002
  • Pan, J., Feng, Z., Zhang, Y., Xi, X., Miao, S., Cai, M. (2023). Experimental study on evaluation of porosity, thermal conductivity, UCS, and elastic modulus of granite after thermal and chemical treatments by using P-wave velocity. Geoenergy Science and Engineering, 230, 212184. https://doi.org/10.1016/j.geoen.2023.212184
  • Rifat Hasan, M., Toufiq Reza, M. (2018). Hydrothermal deformation of Marcellus shale: Effects of subcritical water temperature and holding time on shale porosity and surface morphology. Journal of Petroleum Science and Engineering, 172, 383-390. https://doi.org/10.1016/j.petrol.2018.09.078
  • Santos, G. G., Crovace, M. C., Zanotto, E. D. (2019). New engineered stones: Development and characterization of mineral-glass composites. Compos B Eng, 167, 556–565. https://doi.org/10.1016/j.compositesb.2019.03.010
  • Sarıışık, G., Özkan E., Kundak E., Akdaş H. (2016). Classification of parameters affecting impact resistance of natural stones, Journal of Testing and Evaluation, 44, 1650-1660. https://doi.org/10.1520/JTE20140276
  • Sengun, N. (2014). Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arabian Journal of Geosciences, 7, 5543–5551. https://doi.org/10.1007/s12517-013-1177-x
  • Sousa, L. M. O., Suárez del Río, L. M., Calleja, L., Ruiz de Argandoña, V. G., Rodríguez Rey, A. (2005). Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Engineering Geology, 77, 153–168. https://doi.org/10.1016/j.enggeo.2004.10.001
  • Tavşan, F., & Küçük, P. (2013). Mutfak Mekânında Kullanılan Tezgâh Malzemelerinin Kullanıcı Tercihleri Açısından İncelenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14(1), 57–69. https://ofd.artvin.edu.tr/tr/download/article-file/25816
  • Türkmenoğlu, Z. F. (2007). Yapı Taşı Olarak Kullanılan Bazı Kayaçların Fiziko-Mekanik Özelliklerinin Belirlenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana.
  • Wu, J., Gao, J., Feng, Z., Chen, S., Nie, T. (2020). Investigation of fracture process zone properties of mode I fracture in heat-treated granite through digital image correlation. Engineering Fracture Mechanics, 235, 107192. https://doi.org/10.1016/j.engfracmech.2020.107192
  • Yıldırım, N., Karaman, A., Ertekin, S., Karaman, A., Uslu, E. (2018). Mutfak mekânında kullanılan tezgâh malzemelerine yönelik kullanıcı tercihleri üzerine bir araştırma: Ağrı ili örneği. Journal of Academic Social Science, 193–206
  • Yu, L., Zhang, Z., Wu, J., Liu, R., Qin, H., Fan, P. (2020). Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion. Theoretical and Applied Fracture Mechanics, 108, 102620. https://doi.org/10.1016/j.tafmec.2020.102620
  • Zhao, Z., Liu, Z., Pu, H., Li, X. (2018). Effect of thermal treatment on brazilian tensile strength of granites with different grain size distributions. Rock Mechanics and Rock Engineering, 51, 1293–1303. https://doi.org/10.1007/s00603-018-1404-6
  • Zhang, W., Sun, Q., Zhu, S., Wang, B. (2017). Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Applied Thermal Engineering, 110, 356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194

Mermer, Granit ve Kompozit Kuvars Mutfak Tezgâhlarının Teknik Özelliklerinin Karşılaştırılması

Yıl 2024, Cilt: 16 Sayı: 2, 814 - 832, 30.06.2024
https://doi.org/10.29137/umagd.1464925

Öz

Mutfak tezgâhları, mutfak mekanındaki sabit donatı elemanlarından biri olarak kabul edilmektedir. Mutfak tezgâhlarında mermer, granit gibi doğal taşlar; lake gibi ahşap ürünler ve kuvars ile doymamış polyester reçine karışımı ile hazırlanan kuvars kompozit tezgâhlar (KKT) gibi mühendislik malzemeleri de yaygın olarak kullanılmaktadır. Gerçekleştirilen çalışmada mutfak tezgâhlarında sıklıkla kullanılan granit, mermer ve KKT numunelerinden üçer adet ürün seçilmiş ve teknik özellikleri karşılaştırılmıştır. Mermer numuneleri olarak, Marmara Bej; Söğüt Bej, Bilecik Bej; granit numuneleri olarak Ankara Füme, Aksaray Yaylak ve Hisar Gri temin edilmiştir. KKT numuneleri için ise üç farklı markanın mutfak tezgâhları ile çalışılmıştır. Tezgâh numunelerinin mineralojik faz analizleri XRD ile; mikroyapı analizleri SEM ile gerçekleştirilmiştir. Numunelerin porozite, su emme ve yoğunluk değerleri Arşimet prensibine göre ölçülmüş; darbe dayanımı TS-EN 14617-9 standardına göre; kimyasal dayanımları ise EN 14617-10 standardına göre belirlenmiştir. Sonuçlar; mermer numunelerin en düşük darbe ve kimyasal dayanımı; KKT numunelerin ise en yüksek darbe ve kimyasal dayanımı sergilediğini göstermiştir. Çalışmada en düşük yığınsal yoğunluğu ve en düşük su emme ve porozite değerlerini Q-3 kodlu KKT sergilemiştir. Genel olarak en yüksek su emme ve görünür porozite değerleri granit numunelerde saptanmıştır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

123M722 TÜBİTAK

Teşekkür

Lotte Chemical Turkey Yüzey Tasarımları San. ve Tic. A.Ş. (Belenco) Firmasına vermiş oldukları teknik desteklerinden dolayı teşekkür ederiz.

Kaynakça

  • Alperen, A. N., Çelik, H., Bağcı, M. (2022). Uşak-Karahallı Mermerlerinin Fiziko-Mekanik Özelliklerinin Mineralojik-Petrografik Özellikleri ile Birlikte Değerlendirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 22(045801), 911–924
  • Alperen, A. N., Çelik, H., Bağcı, M. (2023). Sivaslı (Uşak) Yöresi Mermerlerinin Mühendislik Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2023, 1293–1306
  • Akbulut, Z. F. (2022). Experimental investigation of the surface properties of accidental stained carbonate natural stones. Case Studies in Construction Materials, 17. https://doi.org/10.1016/j.cscm.2022.e01626
  • Arıcı, E., Ölmez, D., Özkan, M., Topçu, N., Çapraz, F., Deniz, G., Altınyay, A. (2019). Kuvars yüzeylerde mekanik dayanım ve yüzey özelliklerinin iyileştirilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 19, 326–332
  • Bozdağ, A. (2020). Doğal yapı taşlarının fiziko mekanik özellikleriyle böhme aşınma direncinin tahmini. 8(4), 1062–1071
  • Çelı̇k, M. Y., & İbrahimoglu, A. (2021). Characterization of travertine stones from Turkey and assessment of their durability to salt crystallization. Journal of Building Engineering, 43. https://doi.org/10.1016/j.jobe.2021.102592
  • Chaki, S., Takarli, M., Agbodjan, W. P. (2008). Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22, 1456–1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002
  • Cruz Silva, T. L. D., Carvalho, E. A. S., Barreto, S. G. N., Perim da Silva, T. B., Demartini, T. J. C., et al. (2023). Characterization of artificial stone developed with granite waste and glass waste in epoxy matrix. Journal of Materials Research and Technology, 26, 2528–2538. https://doi.org/10.1016/j.jmrt.2023.08.045
  • Delle Piane, C., Arena, A., Sarout, J., Esteban, L., Cazes, E. (2015). Micro-crack enhanced permeability in tight rocks: An experimental and microstructural study. Tectonophysics, 665, 149–156. https://doi.org/10.1016/j.tecto.2015.10.001
  • Ding, Q.-L., Ju, F., Song, S.-B., Yu, B.-Y., Ma, D. (2016). An experimental study of fractured sandstone permeability after high-temperature treatment under different confining pressures. Journal of Natural Gas Science and Engineering, 34, 55–63. https://doi.org/10.1016/j.jngse.2016.06.034
  • Ding, Q.-L., Wang, P., Cheng, Z. (2021). Permeability evolution of fractured granite after exposure to different high-temperature treatments. Journal of Petroleum Science and Engineering, 208, 109632. https://doi.org/10.1016/j.petrol.2021.109632
  • Dellaloğlu, B. (2002). Konut mutfaklarında kullanılan tezgâhların fiziksel, mekaniksel ve teknolojik özelliklerinin belirlenmesi (Yüksek Lisans Tezi). Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ağaç İşleri Endüstri Mühendisliği Anabilim Dalı.
  • Fortune Business Insights. (n.d.). Countertop Market. https://www.fortunebusinessinsights.com/industry-reports/countertop-market-101539
  • Ferreira, C., Silva, A., de Brito, J., Dias, I. S., Flores-Colen, I. (2021). Definition of a condition-based model for natural stone claddings. Journal of Building Engineering, 33. https://doi.org/10.1016/j.jobe.2020.101643
  • Hasan, R., & Reza, M. T. (2018). Hydrothermal deformation of Marcellus shale: Effects of subcritical water temperature and holding time on shale porosity and surface morphology. Journal of Petroleum Science and Engineering, 172, 383-390. https://doi.org/10.1016/j.petrol.2018.09.078
  • Huang, Z., Zeng, W., Gu, Q., Wu, Y., Zhong, W., Zhao, K. (2021). Investigations of variations in physical and mechanical properties of granite, sandstone, and marble after temperature and acid solution treatments. Construction and Building Materials, 307, 124943. https://doi.org/10.1016/j.conbuildmat.2021.124943
  • Jinwen Wu, Jingwu Gao, Zijun Feng, Shuping Chen, Taoyi Nie. (2020). Investigation of fracture process zone properties of mode I fracture in heat-treated granite through digital image correlation. Engineering Fracture Mechanics, 235, 107192. https://doi.org/10.1016/j.engfracmech.2020.107192
  • Junique, T., Vázquez, P., Géraud, Y., Thomachot-Schneider, C., Sidibé, H. (2021). Microstructural evolution of granitic stones exposed to different thermal regimes analysed by infrared thermography. Engineering Geology, 286, 106057. https://doi.org/10.1016/j.enggeo.2021.106057
  • Junique, T., Vazquez, P., Benavente, D., Thomachot-Schneider, C., Géraud, Y. (2021). Experimental investigation of the effect of quenching cycles on the physico-chemical properties of granites. Geothermics, 97, 102235. https://doi.org/10.1016/j.geothermics.2021.102235
  • Li, D., Ma, J., Wan, Q., Zhu, Q., Han, Z. (2021). Effect of thermal treatment on the fracture toughness and subcritical crack growth of granite in double-torsion test. Engineering Fracture Mechanics, 253. https://doi.org/10.1016/j.engfracmech.2021.107903
  • Li, H., Yang, D., Zhong, Z., Sheng, Y., Liu, X. (2018). Micro damage evolution and macro-mechanical property degradation of limestone due to chemical effects. International Journal of Rock Mechanics and Mining Sciences, 110, 257–265. https://doi.org/10.1016/j.ijrmms.2018.07.011
  • Li, H., Zhu, Z., Liu, X., Sheng, Y., Yang, D. (2018). Experimental investigation on the micro damage evolution of chemical corroded limestone subjected to cyclic loads. International Journal of Fatigue, 113, 23–32
  • Li, S., Huo, R., Wang, B., Ren, Z., Ding, Y., Qian, M., Qiu, T. (2018). Experimental study on physicomechanical properties of sandstone under acidic environment. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/5784831
  • Li, J., Kaunda, R. B., Zhu, L., Zhou, K., Gao, F. (2019). Experimental study of the pore structure deterioration of sandstones under freeze-thaw cycles and chemical erosion. Advances in Civil Engineering. https://doi.org/10.1155/2019/9687843
  • Li, N., Zhang, Z., Su, B., Gunter, S. (2003). A chemical damage model of sandstone in acid solution. International Journal of Rock Mechanics and Mining Sciences, 40, 243–249. https://doi.org/10.1016/S1365-1609(02)00132-6
  • Lam Dos Santos, J. P., Rosa, L. G., Amaral, P. M. (2011). Temperature effects on mechanical behaviour of engineered stones. Constr Build Mater, 25(1), 171–174. https://doi.org/10.1016/j.conbuildmat.2010.06.042
  • Martin, R. F., Schumann, D., Dharmapriya, P. L. (2022). Dolomitic Marble in a Context of UHT Metamorphism: Possible Signs of Melting, Lenadora Quarry, Sri Lanka. Journal of Petrology, 63(7), egac057
  • Miao, S., Cai, M., Guo, Q., Wang, P., Liang, M. (2016). Damage effects and mechanisms in granite treated with acidic chemical solutions. International Journal of Rock Mechanics and Mining Sciences, 88, 77–86. https://doi.org/10.1016/j.ijrmms.2016.07.002
  • Pan, J., Feng, Z., Zhang, Y., Xi, X., Miao, S., Cai, M. (2023). Experimental study on evaluation of porosity, thermal conductivity, UCS, and elastic modulus of granite after thermal and chemical treatments by using P-wave velocity. Geoenergy Science and Engineering, 230, 212184. https://doi.org/10.1016/j.geoen.2023.212184
  • Rifat Hasan, M., Toufiq Reza, M. (2018). Hydrothermal deformation of Marcellus shale: Effects of subcritical water temperature and holding time on shale porosity and surface morphology. Journal of Petroleum Science and Engineering, 172, 383-390. https://doi.org/10.1016/j.petrol.2018.09.078
  • Santos, G. G., Crovace, M. C., Zanotto, E. D. (2019). New engineered stones: Development and characterization of mineral-glass composites. Compos B Eng, 167, 556–565. https://doi.org/10.1016/j.compositesb.2019.03.010
  • Sarıışık, G., Özkan E., Kundak E., Akdaş H. (2016). Classification of parameters affecting impact resistance of natural stones, Journal of Testing and Evaluation, 44, 1650-1660. https://doi.org/10.1520/JTE20140276
  • Sengun, N. (2014). Influence of thermal damage on the physical and mechanical properties of carbonate rocks. Arabian Journal of Geosciences, 7, 5543–5551. https://doi.org/10.1007/s12517-013-1177-x
  • Sousa, L. M. O., Suárez del Río, L. M., Calleja, L., Ruiz de Argandoña, V. G., Rodríguez Rey, A. (2005). Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Engineering Geology, 77, 153–168. https://doi.org/10.1016/j.enggeo.2004.10.001
  • Tavşan, F., & Küçük, P. (2013). Mutfak Mekânında Kullanılan Tezgâh Malzemelerinin Kullanıcı Tercihleri Açısından İncelenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 14(1), 57–69. https://ofd.artvin.edu.tr/tr/download/article-file/25816
  • Türkmenoğlu, Z. F. (2007). Yapı Taşı Olarak Kullanılan Bazı Kayaçların Fiziko-Mekanik Özelliklerinin Belirlenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana.
  • Wu, J., Gao, J., Feng, Z., Chen, S., Nie, T. (2020). Investigation of fracture process zone properties of mode I fracture in heat-treated granite through digital image correlation. Engineering Fracture Mechanics, 235, 107192. https://doi.org/10.1016/j.engfracmech.2020.107192
  • Yıldırım, N., Karaman, A., Ertekin, S., Karaman, A., Uslu, E. (2018). Mutfak mekânında kullanılan tezgâh malzemelerine yönelik kullanıcı tercihleri üzerine bir araştırma: Ağrı ili örneği. Journal of Academic Social Science, 193–206
  • Yu, L., Zhang, Z., Wu, J., Liu, R., Qin, H., Fan, P. (2020). Experimental study on the dynamic fracture mechanical properties of limestone after chemical corrosion. Theoretical and Applied Fracture Mechanics, 108, 102620. https://doi.org/10.1016/j.tafmec.2020.102620
  • Zhao, Z., Liu, Z., Pu, H., Li, X. (2018). Effect of thermal treatment on brazilian tensile strength of granites with different grain size distributions. Rock Mechanics and Rock Engineering, 51, 1293–1303. https://doi.org/10.1007/s00603-018-1404-6
  • Zhang, W., Sun, Q., Zhu, S., Wang, B. (2017). Experimental study on mechanical and porous characteristics of limestone affected by high temperature. Applied Thermal Engineering, 110, 356–362. https://doi.org/10.1016/j.applthermaleng.2016.08.194
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Karekterizasyonu
Bölüm Makaleler
Yazarlar

Aylin Özodabaş 0000-0002-6011-980X

Betül Yıldız 0000-0002-7520-7722

Asli Tayçu 0000-0003-4864-8749

Proje Numarası 123M722 TÜBİTAK
Erken Görünüm Tarihi 30 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 4 Nisan 2024
Kabul Tarihi 24 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 16 Sayı: 2

Kaynak Göster

APA Özodabaş, A., Yıldız, B., & Tayçu, A. (2024). Mermer, Granit ve Kompozit Kuvars Mutfak Tezgâhlarının Teknik Özelliklerinin Karşılaştırılması. International Journal of Engineering Research and Development, 16(2), 814-832. https://doi.org/10.29137/umagd.1464925
Tüm hakları saklıdır. Kırıkkale Üniversitesi, Mühendislik Fakültesi.